JCM_MN_F_PM_ver2 JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM. Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Torm for submitting the proposed methodolog	, y	
Host Country	Mongolia	
Name of the methodology proponents	KANDEN PLANT Co., Inc.	
submitting this form	NICHIAS Co., Inc.	
Sectoral scope(s) to which the Proposed	1. Energy industries	
Methodology applies		
Title of the proposed methodology, and	Plant efficiency improvement of through thermal	
version number	insulation installation by application of thermal	
	insulation materials (Ver1.0)	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
	Appendix 1: Identification method of reference	
	radiation heat quantity and thermal insulation	
	efficiency by the project thermal insulation	
	material (which are parameters fixed ex ante)	
	Appendix 2: Identification method of reference	
	radiation heat quantity and initial thermal	
	insulation efficiency by the project thermal	
	insulation material (which are parameters fixed	
	ex ante)	
	Appendix 3: Calculation equation of radiation	
	heat quantity based on JIS A9501	
	Appendix 4: Identification of decreasing rate	
	from initial thermal insulation efficiency of the	
	project thermal insulation material according to	
	measurement data thermal conductivity for	
	project thermal insulation material in	
	conservative manner	
Date of completion	16 th February, 2015	

Form for submitting the proposed methodology

History of the proposed methodology

Version	Date	Contents revised
1.0	1 st September,	First Version

	2014	
2.0	13 th January	, Second Version
	2015	
3.0	16 th February	, Third Version
	2015	

A. Title of the methodology

Plant efficiency improvement of through thermal insulation installation by application of thermal insulation materials (Ver3.0)

B. Terms and definitions

Terms	Definitions
ASTM C1728-12	ASTM is the acronym of American Society for Testing and
	Materials and an international standard organization. ASTM
	standards are produced by the world largest, unofficial and
	noncommercial organization and used worldwide even it is
	arbitrary standards.
	ASTM C1728-12 standardizes the specification for Flexible
	Aerogel Insulation.
Boiler efficiency	Boiler efficiency is formulated as follows that means boiler
	heat efficiency (ratio of input and output heat quantity of
	boiler).
	Boiler efficiency
	= (Heat quantity of generated main steam- Heat quantity of
	feed-water)/ Heat quantity of consumed boiler fuel
	or
	Boiler efficiency
	= (Heat quantity of consumed boiler fuel-Heat loss quantity
	of boiler) /Heat quantity of consumed boiler fuel
	Heat loss of boiler is caused by heat loss of boiler exhaust
	gases, radiation heat loss of boiler surface, unburnt
	composition in fly ashes, unburnt composition of bottom
	ashes, energy loss in start-up of boiler, etc.

Infrared thermography	The equipment which displays image of surface temperature
	distribution that is converted from detected infrared energy
	emitted from object to temperature though it is unable to
	directly measure radiation heat quantity emitted form the
	surface of object.
	It has following features:
	- Non-contact measurement enables to measure surface
	temperature from remote location.
	- It provides real-time measurement.
Heat flow meter	The equipment which measures heat flow quantity. The
	intense of heat movement is called as heat flow (heat energy)
	and dimensioned as quantity of heat energy per unit area
	(W/m2). It is measured by difference of temperatures
	between the sides of flat-board-shaped heat resistor that is
	proportioned to quantity of heat flow when the heat flow is
	passed through the heat resistor. An antecedent of
	temperature variation is given by using heat flow meter as
	heat movement and quantity shows visibly though
	thermocouples or thermography are unable to show process
	of the temperature variation (heat is emitted or absorbed).

C. Summary of the methodology

Items	Summary
GHG emission	The objective of the project activity is to reduce heat quantity radiated from
reduction	surfaces of heat/power supply facilities at thermal power plant due to thermal
measures	insulation installation by application of thermal insulation materials.
	The coal consumption for boiler fuel will reduce by thermal insulation
	installation. Thus the project activity leads to GHG emission reduction.
	(The amount of heat and power supplied by the thermal power plant in project
	case is thought to be equivalent to the one in reference case.)

		Coal consumption	Radiation heat quantity from main steam pipe linage	Heat supply/Power supply	7
	Reference case	Boiler	q Existing thermal	Steam OF supply Heat water supply Power Supply EG	d
	Project case	Boiler $W-\alpha$ Coal	q-β Project thermal insulation material	Steam OF supply Factory Heat water Supply Ulan Bator district her distribution system Power EG	
	Figure 1	Imaging cor	nparison betwee	en project case and refere	ence one
Calculation of	The reference	e emissions a	re calculated wi	th the following equatio	ns.
reference emissions	$RE_{y} = QR_{RE,y} / \eta_{boiler} \times EF_{CO2,coal}$				
	$QR_{RE,y} = \sum_{n}$	$QR(n)_{RE,y}$			
	$QR(n)_{RE,y} = S$	$SA(n)_{RE,y} \times qR$	$R_{RE} \times 3600 \times OH$	$V(n)sv_{y} \times 10^{-9}$	
	Where:				
	RE _v	Reference	emissions durir	ng the period of year y	tCO ₂ /y
	$QR_{RE,y}$	Reference period of	total radiation year y	n quantity during the	GJ/y
	n	Line Nur installed b thermal po	mber of main by the project in ower plant	steam pipe linage sulation material at the	
	$QR(n)_{RE,y}$	Reference pipe line I	total radiation of No. <i>n</i> during the	quantity on main steam period of year y	GJ/y
	$\eta_{\scriptscriptstyle boiler}$	Boiler effi	ciency		Non- dimension
	$EF_{CO2,coal}$	CO ₂ emiss	sion factor of co	al	tCO ₂ /GJ
Calculation of	The project e	emissions are	calculated with	the following equations	
projeci			FF		
emissions	$PE_y = QK(n)_i$	_{PJ,y} / η_{boiler} × I	E F _{CO2,coal}		
	$Q_{PJ,y} = \sum_{n} Q$	$QR(n)_{PJ,y}$			
	$QR(n)_{PJ,y} = S.$	$A(n)_{PJ,y} \times qR$	$(n)_{PJ,y} \times 3600 \times$	$OH(n)sv_{,y} \times 10^{-9}$	

	Where		
	PE_y	Project emissions during the period of year <i>y</i>	tCO ₂ /y
	$QR_{PJ,y}$	Project total radiation quantity during the period of year <i>y</i>	GJ/y
	n	Line Number of main steam pipe linage installed by the project insulation material at the thermal power plant	
	$QR(n)_{PJ,y}$	Project total radiation quantity on main steam pipe line No. n during the period of year y	GJ/y
	$\eta_{\scriptscriptstyle boiler}$	Boiler efficiency	Non-dimension
	EF _{CO2,coal}	CO ₂ emission factor of coal	tCO ₂ /GJ
Monitoring parameters	 Steam flow Total area w Thermal consultation) [W Thermal consultation] we are stated at the state stat	hours in main steam pipe line [hours] here project thermal insulation materials have onductivity of new project thermal insulation //m·K] onductivity of used project thermal insulation ce installation [W/m·K]	stripped [m ²] n material (before n material after y
	 (Parameters fi The following fixed <i>ex ante</i>. Length insta Thickness control 	ixed after 1 st verification) g parameters are not needed to monitor but can alled by the project thermal insulation material constructed by the project thermal insulation ma	not be parameters tterial

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project activity is to reduce heat quantity radiated from surfaces of existing
	main steam pipe system in coal-fired thermal power plant due to thermal
	insulation installation by application of high performing thermal insulation
	materials.
Criterion 2	Installation works can be carried out without removing existing thermal
	insulation materials (e.g. asbestos).

Criterion 3	Non-	asbestos Flexible Aerogel th	hermal insulation is to be employed in order to	
	ensu	ring appropriate installation	works which prevent scatter of asbestos.	
	Furth	nermore, fluorocarbon foam	ing agent is not also to be contained in the	
	mate	rial from a standpoint of en	vironmental integrity.	
Criterion 4	Ther	mal insulation materials em	ployed for project has apparent thermal lower	
	than	ones defined by ASTM C17	728-12 and ones calculated by the following	
	appro	approximate expression extrapolated to high temperature range based on ones		
	defin	ed by ASTM C1728-12.		
	Ther	mal conductivity of Flexibl	e Aerogel thermal insulation defined by ASTM	
	C172	28-12		
		Mean Temperature [°C]	Apparent thermal conductivity $[W/m \cdot K]$	
		23.9	0.021	
		37.8	0.022	
		93.3	0.023	
		149	0.025	
		204	0.029	
		260	0.032	
		316	0.036	
		371	0.043	
	<u>Appı</u>	oximate expression extrapo	lated to high temperature range based thermal	
	cond	uctivity of Flexible Aerogel	thermal insulation defined by ASTM C1728-12	
	$\lambda = 2$	$.771E - 10 \cdot \theta^3 - 3.098 E - 9 \cdot \theta^3$	θ^2 +3.328 E-5: θ +0.02034	
	wher	e:		
	λ·т	-, hermal conductivity of Fley	ible Aerogel thermal insulation $[W/m \cdot K]$	
	λ. I ο Π		ible Actoget thermal insulation [w/m/K]	
	θ:Τ	emperature [°C]		
Criterion 5	Ther	mal insulation materials em	ployed for project covers operating high	
	temp	erature range for the project	t as the manufacturer's catalog value.	

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types
Coal consumption of the boiler fuel burned for generating heat quantity	CO2
that would be radiated from the surface of the existing thermal	
insulation material at the project installation area of main steam pipe	

linage in the absence of the project activity.	
NA	NA
Project emissions	
Emission sources	GHG types
Coal consumption of the boiler fuel burned for generating heat quantity	CO2
Coal consumption of the boiler fuel burned for generating heat quantity radiated from the surface of the project thermal insulation at the project	CO2
Coal consumption of the boiler fuel burned for generating heat quantity radiated from the surface of the project thermal insulation at the project installation area of main steam pipe linage	CO2
Coal consumption of the boiler fuel burned for generating heat quantity radiated from the surface of the project thermal insulation at the project installation area of main steam pipe linage NA	CO2 NA
Coal consumption of the boiler fuel burned for generating heat quantity radiated from the surface of the project thermal insulation at the project installation area of main steam pipe linage NA NA	CO2 NA NA
Coal consumption of the boiler fuel burned for generating heat quantity radiated from the surface of the project thermal insulation at the project installation area of main steam pipe linage NA NA NA	CO2 NA NA NA
Coal consumption of the boiler fuel burned for generating heat quantity radiated from the surface of the project thermal insulation at the project installation area of main steam pipe linage NA NA NA NA	CO2 NA NA NA NA
Coal consumption of the boiler fuel burned for generating heat quantity radiated from the surface of the project thermal insulation at the project installation area of main steam pipe linage NA NA NA NA NA	CO2 NA NA NA NA NA

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

At thermal power plants of Mongolia, the current situation without heat-retention activity for heat/power supply facilities will continue in the absence of JCM scheme, because a lot of additional costs are required to do high performing thermal insulation installation by the following reasons;

- Since the price of coal consumed for domestic use is very cheap in Mongolia, Saving activity for coal consumption is not economically attractive.

- For plant efficiency improvement, there are some important measures which are given priority over a thermal insulating one. A thermal insulating one is the latest option.

- In case of installing cheap and low-performing insulation materials, it is required to install thickly for sectional thickness of main steam pipes and causes problems in terms of durability of main steam pipes and work safety.

Under these circumstances, as for quantifying reference emission, we cannot see scenarios situated between BaU and the project one in case of the project activity. In other words, we cannot differentiate reference from BaU in term of "scenario". So, for this project activity,

quantifying reference emission, we identified values for parameters involved in calculation equation of reference emissions in conservative manner, in order to differentiate reference emission from BaU one.=Therefore, the methodology results in a net reduction of emissions, since reference emissions are secured to be lower than the BaU emissions.

Therefore, the methodology results in a net reduction of emissions, since reference emissions are secured to be lower than the BaU emissions.

F.2. Calculation of reference emissions

The reference emissions are calculated with the following equations.

$$RE_{y} = QR_{RE,y} / \eta_{boiler} \times EF_{CO2,coal}$$
$$QR_{RE,y} = \sum_{n} QR(n)_{RE,y}$$

 $QR(n)_{RE,y} = SA(n)_{RE,y} \times qR_{RE} \times 3600 \times OH(n)sf_{y} \times 10^{-9}$ $SA(n)_{RE,y} = SA(n)_{ExI} \times (1 - SA(n)_{PJI-str,y} / SA(n)_{PJI-ins})$ $SA(n)_{ExtI} = (d(n)_{ExtP} + 2 \times t(n)_{ExtI}) / 1000 \times \pi \times l(n)_{PJI}$

Where;

DE	Deference emissions during the period of year y	tCO /r				
KLy	Reference emissions during the period of year y	iCO ₂ /y				
$QR_{RE,y}$	Reference total radiation quantity during the period of year y					
	Line Number of main steam pipe linage installed by the project					
n	insulation material at the thermal power plant					
OP()	Reference total radiation quantity on main steam pipe line No. n					
$QK(n)_{RE,y}$	during the period of year y					
		Non-				
η_{boiler}	Boller elliciency					
EF _{CO2,coal}	CO ₂ emission factor of coal	tCO ₂ /GJ				

$SA(n)_{RE,y}$	Reference radiation surface area for main steam pipe line No. n	m ²	
	during the period of year y		
	Reference radiation heat quantity (before thermal insulation		
qR_{RE}	installation) from main steam pipe linage at the thermal power	W/m^2	
	plant		
OU(n) of	Steam flow hours in main steam pipe line No. n during the period	hours/w	
$OH(n)SJ,_y$	of year y	nours/y	

$SA(n)_{ExtI}$	Surface area covered by existing thermal insulation material					
	where will be installed by the project thermal insulation material					
	for main steam pipe line No. <i>n</i>					
$SA(n)_{PJI-ins}$	Surface area covered by the project thermal insulation material for	2				
	main steam pipe line No. <i>n</i>	III				
$\mathbf{C}\mathbf{A}(\mathbf{r})$	Total area where project thermal insulation materials have stripped	2				
$SA(n)_{PJI-str,y}$	on main steam pipe line No. <i>n</i> by the end of the year <i>y</i>	III				

$d(n)_{ExtP}$	Outside diameter of the existing pipe for main steam pipe line No. n	mm
$t(n)_{ExtI}$	Thickness covered by the existing thermal insulation material on main steam pipe line No. n	mm
$t(n)_{PJI}$	Thickness installed by the project thermal insulation material for main steam pipe line No. n	mm
$l(n)_{PJI}$	Length installed by the project thermal insulation material for main steam pipe line No. n	m

Figure 2 At the thermal power plat which has i boilers of i number and turbines of j number) example for main steam pipe linage No. (In case that project insulation materials are installed for all lines)

G. Calculation of project emissions

The project emissions are calculated with the following equations.

$$PE_{y} = QR(n)_{PI,y} / \eta_{boiler} \times EF_{CO2,coal}$$

$$Q_{PJ,y} = \sum_{n} QR(n)_{PJ,y}$$

 $\begin{aligned} QR(n)_{PJ,y} &= SA(n)_{PJ,y} \times qR(n)_{PJ,y} \times 3600 \times OH(n)sf_{,y} \times 10^{-9} \\ SA(n)_{PJ,y} &= SA(n)_{PJI\text{-}ins} \times (1 - SA(n)_{PJI\text{-}stt,y} / SA(n)_{PJI\text{-}ins}) \\ SA(n)_{PJI\text{-}ins} &= (d(n)_{ExtP} + 2 \times t(n)_{ExtI} + 2 \times t(n)_{PJI}) / 1000 \times \pi \times l(n)_{PJI} \\ qR(n)_{PJ,y} &= qR_{RE} \times \{1 - f(n)_{PJI\text{-}eff} \times (1 - f_{PJI\text{-}dec,y})\} \\ f_{PJI\text{-}dec,y} &= \text{Maximum} \{(\lambda_{PJI,y} - \lambda_{PJI,0}) / \lambda_{PJI,0}, 0\} \end{aligned}$

Where;

PE_y	Project emissions during the period of year y	tCO ₂ /y
$QR_{PJ,y}$	Project total radiation quantity during the period of year y	GJ/y
n	Line Number of main steam pipe linage installed by the project insulation material at the thermal power plant	
$QR(n)_{PJ,y}$	$\frac{PR(n)_{PJ,y}}{PR(n)_{PJ,y}}$ Project total radiation quantity on main steam pipe line No. <i>n</i> during the period of year <i>y</i>	
$\eta_{\scriptscriptstyle boiler}$	Boiler efficiency	Non-dimension

EF _{CO2,coal}	CO ₂ emission factor of coal tCO ₂ /						
SA(n)	Project radiation surface area for main steam pipe line No	. n	m^2				
$SA(n)_{PJ,y}$	during the period of year y						
	Project radiation heat quantity (after thermal insulat	ion					
$qR(n)_{PJ,y}$	installation) from main steam pipe linage at the thermal power						
	plant						
OH(n)sf	Steam flow hours in main steam pipe line No. <i>n</i> during the per-	iod	hours/v				
011(<i>n</i>)5J,y	of year y		nours/y				
	Surface area covered by existing thermal insulation mater	rial					
$SA(n)_{ExtI}$	where will be installed by the project thermal insulation mater	rial	m ²				
	for main steam pipe line No. <i>n</i>						
$SA(n)_{PII ins}$	Surface area covered by the project thermal insulation material	for	m^2				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	main steam pipe line No. <i>n</i>						
$SA(n)_{PILstry}$	Total area where project thermal insulation materials have stripp	ped	$m^2$				
~~~~(``)1 J1-sii,y	on main steam pipe line No. <i>n</i> by the end of the year <i>y</i>						
	L		1				
$d(n)_{ExtP}$	Outside diameter of the existing pipe for main steam pipe line N	lo. <i>n</i>	mm				
$t(n)_{E_{n}}$	Thickness covered by the existing thermal insulation materia	al on	mm				
t(n)Extl	main steam pipe line No. n						
$t(n)_{\rm DH}$	Thickness installed by the project thermal insulation materia	1 for	mm				
	main steam pipe line No. n						
$l(n)_{PH}$	Length installed by the project thermal insulation material for	main	m				
	steam pipe line No. <i>n</i>						
	T						
	Reference radiation heat quantity (before thermal insulat	ion	-				
qR_{RE}	installation) from main steam pipe linage at the thermal pov	ver	W/m^2				
	plant						
f(n)p11_off	Initial thermal insulation efficiency by the project therm	nal	Non-				
J (· · ·) I JI-ejj	insulation material for main steam pipe line No. n	(dimension				
f _{PII-dec} .v	Decreasing rate from initial thermal insulation efficiency of	the 1	Non-				
J 1 51-48(7 y	project thermal insulation material for main steam pipe line No.	n (dimension				
			1				
λ_{PJL0}	Thermal conductivity of new project thermal insulation mater	rial	W/m•K				
, vrji,0	(before installation)						

H. Calculation of emissions reductions

The emission	The emission reductions are calculated from the reference emissions and the project emissions.						
$ER_y = RE_y - PE_y$							
Where;							
ER_y	GHG emission reductions during the period of year y	tCO _{2e} /y					
RE_y	Reference emissions during the period of year y	tCO ₂ /y					
PE_y	Project emissions in during the period of year y	tCO ₂ /y					

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source				
$\eta_{\scriptscriptstyle boiler}$	Doilor officionay	Default value.				
	Boiler efficiency	1.0 (Most conservative value) is applied to the				

		parameter
EF _{CO2,coal}	CO ₂ emission factor of coal	Default value. Default value of CO ₂ emission factor for "Lignite", according to "2006 IPCC Guidelines for National Greenhouse Gas Inventory"
<i>d</i> _{ExtP}	Outside diameter of the existing pipe	Well-known value before the prior to the project implementation according to drawing for design according to the thermal power plant
t _{ExtI}	Thickness covered by the existing thermal insulation material	Well-known value before the prior to the project implementation according to equipment specification according to the thermal power plant
qR_{RE}	Reference radiation heat quantity (before thermal insulation installation) from main steam pipe linage	Parameter fixed ex ante identified according to Appendix 1 and Appendix 2
f _{PJI-eff}	Initial thermal insulation efficiency by the project thermal insulation material	Parameter fixed ex ante identified according to Appendix 1 and Appendix 2

Appendix 1

Study procedure for identification of reference radiation heat quantity and thermal insulation efficiency by the project thermal insulation material (which are parameters fixed ex *ante*)

In order to identifying values of 2 parameters fixed *ex ante*, the study was carried out as the following procedure;

For the study, Pyrogel XT (Project thermal insulation material for the proposal project) has actually installed for sample on main steam pipes at CHP3 (high pressure unit) and CHP4,

in order to identifying values of the following 2 parameters which are parameters fixed *ex ante* for the proposed methodology;

- Reference radiation heat quantity (before thermal insulation installation) from main steam pipe linage (qR_{RE})

- Thermal insulation efficiency by the project thermal insulation material $(f_{PJI-eff})$

Then, for the quantification work, two measuring equipments (infrared thermography and heat flow meter) were employed.

• Infrared thermography cannot directly measure radiation heat quantity from the surface of the measured object, but can provide a radiation heat distribution from a wide area (can indirectly convert to radiation heat quantity (heat flow) according to equations based on JIS 9501.).

• Heat flow meter can directly measure radiation heat quantity (heat flow) from the surface of the measured object for pinpoint (for only area attached by the sensor), but cannot measure widely.

The surface temperature distribution on the existing thermal insulation material at CHPs in Mongolia ranges in scope, because the content of asbestos in the existing thermal insulation material are considerably different with location and we can see many deterioration points on them.

Under these circumstances, infrared thermography is better for the measurement, however it cannot measure. So, we values fluctuating radiation heat quantity, taking advantage of strong points of both equipments.

For sampling installation position of project thermal insulation material, each 3 positions are established in CHP3 (high pressure unit) and CHP4 according to site conditions (for safety and for positions where are not comparatively different with location), as the following figures;

Figure AP1-1.1 Sampling installation positions of project thermal insulation material at CHP3 (high pressure unit)¹

Figure AP1-1.2 Sampling installation positions of project thermal insulation material at CHP3 (high pressure unit)

At each position of 6 ones, 4 areas (1 position for non-installation and 3 installation positions for thickness of 10mm, 20mm and 40mm) are set.

At same positions of each area, the following measurements were performed with and without

¹ Facilities and main steam pipes (filled with red) are on operation status.

installation of the project thermal insulation material;²

• Taking thermographic images by infrared thermography (including measuring surface temperature and ambient temperature by contact type thermo-meter) just before measurement of heat flow meter

• Measuring radiation heat quantity by heat flow meter (Measuring frequency: Continuously, Recording frequency: Every second, Measuring length: 1-2 hours)

Figure AP1-2.1 Imaging figure of measurement without sampling installation of the project thermal insulation material at each area

 $^{^2}$ For the study, wind velocity around sampling installation position was not measured and it is assumed that wind velocities equals to 0, because of indoor facilities. Although wind velocities were measured in FS of FY2013, all data for wind velocities was 0 m/s (below detection limit of the air speed meter).

Figure AP1-2.2 Imaging figure of measurement with sampling installation of the project thermal insulation material at each area

Sampling installation position	08 Sep.	09 Sep.	10 Sep.	13 Sep.
Common header between No.10 Boiler and No.7 Turbine	14:00-14:30 Sampling Installation By heat	Measurin Infrared thermoer (with côt thermo-r	g by aphy tact type eter:	
No.12 Boiler to common header	Measuring by Infrared thermography (with contact typ thermo-meter)	13:00-14:30 Sampling Installation Measuring by heat flow meter flow meter	Removal 10:00-12:20 easuring by heat Wreasuring by heat flow meter	Measuring by Infrared thermography (with contact type thermo-meter)
No.10 Boiler to common header		Infrared thermography (with contact type thermo-meter) Measuring Infrared thermograp	10:30-11:00 Sampling Installation by flo	9:00-10:30 easuring by heat W meter W meter Removal 13:30-15:00 Measuring by heat flow meter
No.13 Boiler to common header		(with conta thermo-me	er) Sampling Installation Measuring by Infrared thermography (with contact type thermo-meter)	11:00-12:30 Removal Measuring by heat flow meter Measuring by heat flow meter

Works for sampling installation of project thermal insulation material and measurement were carried out as the following tables;

Table AP1-1.1 Process of works for sampling installation of project thermal insulation material

Sampling installation position		11 Sep.	12 Sep. Measurin	15 Sep. ^{g by}	16 Sep.
No.3 boiler to common	Without insulation	Measuring by Infrared thermography (with contact t thermo-meter) 	ype	aphy ttact type 13:37- heter) Measuring 1	15:39 by hear
header	With insulation		Removal	flow me	ter
Common header	Without insulation	15:05-16:15 Measuring	Measuring by Infrared thermography (with contact type thermo-meter), as the		
Boiler and No.4 one	With insulation	flow mete	Sampling Measuri installation Meat flow	20 Measuring ng by Infrared meter thermograp (with conta	by hy ct type
No.5 boiler to	Without insulation	(with contact type thermo-meter)	Measuring by Infrared thermography (with contact type thermo-meter)	thermo-me	ter) 10:00-11:30
header	With insulation		Sampling Installation	Measuring by heat flow meter	emoval

and measurement (at CHP3 high pressure unit)³

Table AP1-1.2 Process of works for sampling installation of project thermal insulation material and measurement (at CHP4)

Operation status for related boilers/turbines during measurement by infrared thermography and heat flow meter are briefly as the following tables;

Table AP1-2.1 Operation status during measurement by infrared thermography and heat flow meter (at CHP3 high pressure unit)

³ Sampling installation and measuring works were carried out by initial planed procedure during 2 days after the works started. However, initial procedure for works was changed according to site situations, confirming measured data. The data measured by initial procedure are excluded from available ones to analyze and identify 2 parameters fixed ex ante.

1

		08 S	ep.	09	Sep.		10 Sep.			13 S	Sep.	
Measuring point	Measuring parameter	Boiler or Turbine No.	15:03-16:03	Boiler or Turbine No.	15:00-16:00	Boiler or Turbine No.	10:00-12:20	16:00-16:30	Boiler or Turbine No.	9:00-10:30 13:30- 15:00	Boiler or Turbine No.	11:00- 12:30 15:30- 17:00
	Steam pressure [ata]		98-99		98-99		96-99	98-99		97-100		97-99
Boiler outlet	Steam Temp. [°C]	No, 10	531-538	No, 12	531-537	No, 12	530-538	526-532	No, 10	529-540	No, 13	533-542
	Steam flow rate [t/h]		149-156		141-156		145-156	148-166		149-157		142-146
	Steam pressure [ata]		90-91	/		/	/	/	/	/	/	/
Turbine inlet	Steam Temp. [°C]	No, 7	526-533	/	/	/			/		/	/
	Steam flow rate [t/h]		138-139								/	/
Common header	Steam pressure [ata]	No.10 Boiler-No.7 Turbine	90									
Operation Boiler		No.10,	,12,13	No.	10,12,13		No.10,12,1	3		No.10	,12,13	
Operation Turbine		No.6,	7,9	No	.6, 7, 9		No.6, 7, 9)		No.6	, 7, 9	

Designed Value

	Boiler outlet	Turbine inlet (No.5-8)	Turbine inlet (No.9)
Steam pressure [kg/cm ²]	100	90	88
Steam Temp. [°C]	540	535	535
Steam flow rate [t/h]	220		
Output [MW]		22	50

Table AP1-2.2 Operation status during measurement by infrared thermography and heat flow meter (at CHP4)

			11 Sep.			12 Sep.		15 Sep.				16 Sep.	
Measuring point	Measuring parameter	Boiler No.	15	15:00-16:00 Bo No		Boiler No.	10:00-12:00 / 14:30- 16:00	Boiler No.	9:23- 13:00	Boiler No.	13:35- 15:35	Boiler No.	10:00- 11:30
	Steam pressure [ata]		139-140		137-139	No, 3	140/138	No, 5	138		141		137
Boiler outlet	Steam Temp. [°C]	No, 3	550-563	No, 4	557-561		551/557		558	No, 3	554	No, 5	554
	Steam flow rate [t/h]		401-407		337-341	/ 110.4	404/325		369		339		358
Operation Boiler		No.2,3,4,5,7		No.2,3,4,5,7		No.2,3,4,5,7				No.2,3,4,5,7			
Operation Turbine			No.1,3	3,4,5,6		No.	1,3,4,5,6	No.1,3,4,5,6			No.	1,3,4,5,6	

Designed Value					
	Boiler outlet	Turbine inlet (No.1,6)	Turbine inlet (No.2-5)	Generator (No.1,6)	Generator (No.2-5)
Steam pressure [kg/cm ²]	140	1	30		
Steam Temp. [°C]	560	5	55		
Steam flow rate [t/h]	420				
Output [MW]		80	100	80	100

Specifications of measuring equipments used for the study are as the following tables;

Equipment	Item	Specification				
	Manufacturer, model	Kyoto Denshi Kogyo, HFM-215N				
Heatflow	Measuring item	Heat flow and temperature				
Heat now	Maaninanaa	Heat flow: 0 to $+/-99.999$ W/m ²				
meter	Measuring range	Temperature: K-thermocouple -40°C to750°C				
	Selecting units	Heat flow (W/m^2) + Temperature (°C),				

Table 1-3.1 Specification of heat flow meter

		Heat flow (W/m ²), Temperature(°C)						
	Compline angle	Selecting from 200/500ms,1/2/5/10/20/30sec,						
	Sampling cycle	1/2/5/10/30/min,1h						
	Display update	Approx. 1sec						
	What to diamlary	Selecting from waveform, bar chart, values of heat						
	what to display	flow and waveform plus such values						
		Sensor constant A/B type, sensor constant A type						
	Number of concers	that requires temperature data up to 8, sensor						
	Number of sensors	constant A type that requires no temperature data						
		up to 16						
		16MB						
	Internal memory	Stores data of 55hours with 8 seconds of sensor						
		constant A/B type at sampling rate of 1 second						
	External memory	Compact flush type II, SD card, USB flash drive						
	device	(copy only)						
		Ethernet (10BASE-T/10BASE-TX), web server,						
	External	FTP server, FTP client e-mail transmitting						
	communication	functions compliant with USB 1.1, RS-232C,						
		RS-485						
		Rechargeable battery: lasts for approx 7 hours of						
		continuous use on a full change of approx 8						
		hours, (RT 25°C, measurement cycle of 5						
	Power source	minutes or more, backlighting auto off in 5						
		minutes or less, data communication not in use.)						
		comes with AC adapter (AC 100 to 240V) as						
		standard						
		Temperature: 0 to 50°C (0 to 40°C when using						
	Ambient conditions	battery),						
		Humidity: 5 to 85%RH						
	D	Approx. 155(W)×155(H)×55(D)mm (not including						
	Dimensions	projection portions and rubber cushions)						
	W/ 1.4	Approx. 800g (not including projection portions						
	weight	and rubber cushions)						
Heat flame	Manufacturer, model	Kyoto Denshi Kogyo, KR2						
Heat How	I.I	General-purpose low heat sensor for surface of						
sensor	Usage	insulation						

Standard heat flow range	12-3,500W/m ²
Standard temperature range	-40°C to 150°C
Dimensions of sensing part	50(W)×100(H)mm

Heat flow meter

Heat flow sensor

Figure 1-3.2. Appearance of heat flow meter

Table	1-3.2	Specification	of thermometer	infrared	thermography
ruore	1 3.2	Specification	or unermometer	minuca	moninography

Item	Specification				
Maker/Type	Nippon Avionics Co., Ltd/ InfReC R300				
Measuring range (Temp.)	-40°-500°C				
Setting ability for Temp.	0.03°C at 30°C				
Accuracy for temp.	±0.1°C				
Frame rate	60Hz				
Pixel No.	640×480pixel/320×240pixel				
Angle of view	44°×34°				
Operating environment for temp. and	15°C 50°C Under 90% PH				
humidity	-15 C-50 C, Under 50%KI				

Table 1-3.3 Specification of contact type thermometer

Item	Specification
Maker/Type	ANRITSU/ HFT-50
Measuring range (Temp.)	-99.9°C -499.9°C
Setting ability for Temp.	±0.1°C
A course for tomp	Over 0°C: ±(Indicated value×0.05%+0.2) °C
Accuracy for temp.	Under 0°C: ±0.5°C

Appendix 2

Identification method of reference radiation heat quantity and initial thermal insulation efficiency by the project thermal insulation material (which are parameters fixed ex ante)

Outcomes of the study (by Appendix 1) are as follows;

<u>Comparison of radiation heat quantity between measurement value by heat flow meter and</u> <u>calculation value according to thermographic image analysis by infrared thermography</u>

At 6 sampling installation areas of project thermal insulation material (3 ones for CHP3 and 3 ones for CHP4), both values of radiation heat quantity data (by the following 2 methods) are compared.

- Measured values of radiation heat quantity by heat flow meter (for only area attached by the sensor)
- Calculation values of radiation heat quantity based on JIS A9501 "Standard practice for thermal insulation works"⁴ according to thermographic image analysis for data measured by infrared thermography and contact type thermo-meter (just before measuring by heat flow meter starts)

For thermographic image analysis, pixels for only area attached by the heat flow sensor are extracted of ones within the view as the following figure. Then, the average surface temperatures for the extracted pixels was calculated and converted to the radiation heat quantity from the extracted area based on equation JIS A9501.

Figure AP2-1.1 Example of thermographic image pixels extracted for only area attached by the heat flow sensor without installation of project thermal insulation material

⁴ Please refer to Appendix 3

Figure AP2-1.2 Example of thermographic image pixels extracted for only area attached by the heat flow sensor with installation of project thermal insulation material

Values identified by both methods and the correlation chart between both values are as follows;

Table	AP2-1	Comparison	of values	for radiation	heat c	quantity	identified b	y heat f	low	meter	and
infrar	ed therr	nography									

			Related data of infrared thermography Heat flow meter							Heat flow meter				
			Constitute			Pipe dia	meter inform	ation				Surface temp.	Calculation values of radiation heat quantity based on JIS A9501	Measured values of radiation heat
CHP name	Sampling installation area	Setting position	installation status	Measurement date	Outside diameter of the existing pipe	Thickness covered by the existing thermal insulation material	Thickness installed by the project thermal insulation material	Total outside diameter	Pipe direction	Ambient Temp.	Wind speed	Only area attached by the heat flow sensor	Only area attached by the heat flow sensor	quantity by heat flow meter (Only area attached by the heat flow sensor)
					mm	mm	mm	m		°C	m/s	°C	W/m ²	W/m ²
	No.12 Boiler to Header (B middle)	Non-installation area	Uninstalled	10/09/2014	273	150	0	0.573	Horizontal	38.2	0.0	83.5	507	432
	No.12 Boiler to Header (B middle)	10mm installation area	Uninstalled	10/09/2014	273	150	0	0.573	Horizontal	38.2	0.0	82.3	490	775
	No.12 Boiler to Header (B middle)	20mm installation area	Uninstalled	10/09/2014	273	150	0	0.573	Horizontal	38.2	0.0	90.9	611	403
	No.12 Boiler to Header (B middle)	40mm installation area	Uninstalled	10/09/2014	273	150	0	0.573	Horizontal	38.2	0.0	92.5	634	486
	No.12 Boiler to Header (B middle)	Non-installation area	Installed	10/09/2014	273	150	0	0.573	Horizontal	32.4	0.0	78.2	496	425
	No.12 Boiler to Header (B middle)	10mm installation area	Installed	10/09/2014	273	150	10	0.593	Horizontal	32.4	0.0	59.2	260	415
	No.12 Boiler to Header (B middle)	20mm installation area	Installed	10/09/2014	273	150	20	0.613	Horizontal	32.4	0.0	54.8	211	335
	No.12 Boiler to Header (B middle)	40mm installation area	Installed	10/09/2014	273	150	40	0.653	Horizontal	32.4	0.0	49.5	154	208
	No.10 Boiler to Header (B Middle)	Non-installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	35.0	0.0	86.4	581	1063
	No.10 Boiler to Header (B Middle)	10mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	35.0	0.0	73.1	403	873
CHP3	No.10 Boiler to Header (B Middle)	20mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	35.0	0.0	75.1	428	590
high	No.10 Boiler to Header (B Middle)	40mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	35.0	0.0	67.6	334	535
pressure	No.10 Boiler to Header (B Middle)	Non-installation area	Installed	13/09/2014	2/3	150	0	0.573	Horizontal	28.5	0.0	86.9	656	931
unit	No.10 Boiler to Header (B Middle)	10mm installation area	Installed	13/09/2014	273	150	10	0.593	Horizontal	28.5	0.0	63.0	342	516
	No.10 Boiler to Header (B Middle)	20mm installation area	Installed	13/09/2014	273	150	20	0.613	Horizontal	28.5	0.0	56.8	270	303
	No.10 Boiler to Header (B Middle)	40mm installation area	Installed	13/09/2014	273	150	40	0.653	Horizontal	28.5	0.0	49.2	187	242
	No.13 Boiler to Header (B top)	Non-installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	44.5	0.0	73.7	312	776
	No.13 Boiler to Header (B top)	10mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	44.5	0.0	72.3	294	472
	No.13 Boiler to Header (B top)	20mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	44.5	0.0	72.7	299	619
	No.13 Boiler to Header (B top)	40mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	44.5	0.0	79.5	386	739
	No.13 Boiler to Header (B top)	Non-installation area	Installed	13/09/2014	273	150	0	0.573	Horizontal	39.1	0.0	70.9	333	512
	No.13 Boiler to Header (B top)	10mm installation area	Installed	13/09/2014	273	150	10	0.593	Horizontal	39.1	0.0	67.7	293	493
	No.13 Boiler to Header (B top)	20mm installation area	Installed	13/09/2014	2/3	150	20	0.613	Horizontal	39.1	0.0	65.8	270	344
	No.13 Boiler to Header (B top)	40mm installation area	Installed	13/09/2014	273	150	40	0.653	Horizontal	39.1	0.0	59.3	195	261
	Header Pipe	Non-installation area	Uninstalled	11/09/2014	377	200	0	0.777	Horizontal	37.9	0.0	66.3	283	295
	Header Pipe	10mm installation area	Uninstalled	11/09/2014	377	200	0	0.777	Horizontal	37.9	0.0	65.9	278	311
	Header Pipe	20mm installation area	Uninstalled	11/09/2014	377	200	0	0.777	Horizontal	37.9	0.0	68.2	305	372
	Header Pipe	40mm installation area	Uninstalled	11/09/2014	377	200	0	0.777	Horizontal	37.9	0.0	68.9	314	331
	Header Pipe	Non-installation area	Installed	12/09/2014	377	200	0	0.777	Horizontal	40.5	0.0	67.1	267	309
	Header Pipe	10mm installation area	Installed	12/09/2014	377	200	10	0.797	Horizontal	40.5	0.0	62.8	217	248
	Header Pipe	20mm installation area	Installed	12/09/2014	377	200	20	0.817	Horizontal	40.5	0.0	61.0	197	283
	Header Pipe	40mm installation area	Installed	12/09/2014	377	200	40	0.857	Horizontal	40.5	0.0	54.5	128	149
	No.3 Boiler to Header (B top)	Non-installation area	Uninstalled	15/09/2014	377	200	0	0.777	Horizontal	43.0	0.0	71.5	294	298
	No.3 Boiler to Header (B top)	10mm installation area	Uninstalled	15/09/2014	377	200	0	0.777	Horizontal	43.0	0.0	73.5	318	272
	No.3 Boiler to Header (B top)	20mm installation area	Uninstalled	15/09/2014	377	200	0	0.777	Horizontal	43.0	0.0	75.1	338	371
CHP4	No.3 Boiler to Header (B top)	40mm installation area	Uninstalled	15/09/2014	377	200	0	0.777	Horizontal	43.0	0.0	67.8	250	240
1	No.3 Boiler to Header (B top)	Non-installation area	Installed	12/09/2014	377	200	0	0.777	Horizontal	39.9	0.0	/1.2	321	248
1	No.3 Boiler to Header (B top)	10mm installation area	Installed	12/09/2014	377	200	10	0.797	Horizontal	39.9	0.0	69.4	299	264
1	No.3 Boiler to Header (B top)	20mm installation area	Installed	12/09/2014	377	200	20	0.817	Horizontal	39.9	0.0	64.9	246	290
1	No.3 Boiler to Header (B top)	40mm installation area	Installed	12/09/2014	377	200	40	0.857	Horizontal	39.9	0.0	59.1	181	170
1	No.5 Boiler to Header (B top)	Non-installation area	Uninstalled	16/09/2014	377	200	0	0.777	Horizontal	38.5	0.0	64.8	260	388
1	No.5 Boiler to Header (B top)	10mm installation area	Uninstalled	16/09/2014	377	200	0	0.777	Horizontal	38.5	0.0	66.2	276	398
1	No.5 Boiler to Header (B top)	20mm installation area	Uninstalled	16/09/2014	377	200	0	0.777	Horizontal	38.5	0.0	66.2	276	314
1	No.5 Boiler to Header (B top)	4umministaliation area	Uninstalled	16/09/2014	377	200	0	0.777	Horizontal	38.5	0.0	64.9	261	302
1	No.5 Boiler to Header (B top)	Non-installation area	Installed	12/09/2014	377	200	0	0.777	Horizontal	35.4	0.0	63.8	278	459
	No.5 Boiler to Header (B top)	10mm installation area	Installed	12/09/2014	377	200	10	0.797	Horizontal	35.4	0.0	61.7	254	348
	No.5 Boiler to Header (B top)	20mm installation area	Installed	12/09/2014	377	200	20	0.817	Horizontal	35.4	0.0	59.4	228	295
1	INO.5 BOIIER TO HEADER (B top)	40mm installation area	Installed	12/09/2014	3//	200	40	0.857	Horizontal	35.4	0.0	56.2	193	200

Figure AP2-2 Correlation chart between both values for radiation heat quantity identified by heat flow meter and infrared thermography

As Figure AP2-2 illustrates, values measured by heat flow meter are wholly a little higher than ones calculated based on measurement data by infrared thermography. As for correlation between both ones, it follows that the contributing rate is 0.4684 (the correlation coefficient is 0.6844.).

One could argue that this correlation is significant to a satisfactory extent although sample correlation coefficient is 0.368326 in case of in case sample size of 48 (n=48) and significance level of 1% (α =0.01).

Table AP2-2 Correlation coefficient r table⁵

⁵ Values in the table are ones for correlation coefficient which are critical on the test based on t distribution in case of significance level: α (two-tailed probability) and degree of freedom of n-2.

sample size	significant	ificance level: α (two-tailed probal					
n	0.1	0.05	0.02	0.01			
3	0.987688	0.996917	0.999507	0.999877			
4	0.9	0.95	0.98	0.99			
5	0.805384	0.878339	0.934333	0.958735			
6	0.729299	0.811401	0.882194	0.9172			
7	0.669439	0.754492	0.832874	0.874526			
8	0.621489	0.706734	0.78872	0.834342			
9	0.582206	0.666384	0.749776	0.797681			
10	0.549357	0.631897	0.715459	0.764592			
11	0.521404	0.602069	0.685095	0.734786			
12	0.497265	0.575983	0.65807	0.707888			
13	0.476156	0.552943	0.633863	0.683528			
14	0.4575	0.532413	0.612047	0.661376			
15	0.440861	0.513977	0.59227	0.641145			
16	0.425902	0.497309	0.574245	0.622591			
17	0.41236	0.482146	0.557737	0.605506			
18	0.400027	0.468277	0.542548	0.589714			
19	0.388733	0.455531	0.528517	0.575067			
20	0.378341	0.443763	0.515505	0.561435			
21	0.368737	0.432858	0.503397	0.548711			
22	0.359827	0.422714	0.492094	0.5368			
23	0.351531	0.413247	0.481512	0.52562			
24	0.343783	0.404386	0.471579	0.515101			
25	0.336524	0.39607	0.462231	0.505182			
26	0.329705	0.388244	0.453413	0.495808			
27	0.323283	0.380863	0.445078	0.486932			
28	0.317223	0.373886	0.437184	0.478511			
29	0.31149	0.367278	0.429693	0.470509			
30	0.306057	0.361007	0.422572	0.462892			
31	0.300898	0.355046	0.415792	0.455631			
32	0.295991	0.34937	0.409327	0.448699			
33	0.291316	0.343957	0.403153	0.442072			
34	0.286856	0.338788	0.397249	0.435728			
35	0.282594	0.333845	0.391596	0.429648			
36	0.278517	0.329111	0.386177	0.423814			
37	0.274611	0.324573	0.380976	0.418211			
38	0.270864	0.320217	0.375979	0.412823			
39	0.267267	0.316032	0.371173	0.407637			
40	0.263809	0.312006	0.366546	0.402641			
41	0.260482	0.308131	0.362087	0.397824			
42	0.257278	0.304396	0.357787	0.393174			
43	0.254189	0.300793	0.353636	0.388684			
44	0.251209	0.297315	0.349626	0.384343			
45	0.24833	0.293955	0.34575	0.380144			
46	0.245549	0.290706	0.341999	0.37608			
47	0.242859	0.287563	0.338367	0.372142			
48	0.240255	0.284519	0.334848	0.368326			
49	0.237734	0.28157	0.331437	0.364624			
50	0.23529	0.278711	0.328128	0.361031			

Identification of representative value of reference radiation heat quantity (parameter fixed ex ante)

Temperature distribution on the surface of the existing thermal insulation material at CHPs in Mongolia ranges in scope, because the content of asbestos in the existing thermal insulation material is considerably different with location and we can see many deterioration points on them.

Under these circumstances, infrared thermography is better for the measurement, however it cannot measure.

Furthermore, values measured by heat flow meter are wholly a little higher than calculated based on measurement data by infrared thermography. So, data of thermal diagnosis (in FS of FY2013) is applied to identify the representative value for reference radiation heat quantity (before thermal insulation installation) in conservative manner.

Study contents in thermal diagnosis are as follows;

CHP3 high pressure unit CHP4								
15, 16 October 2013	21 [,] 23 October 2013							
56 points on main steam pipe	58 points on main steam pipe							
linage between No.10 boiler	linage between No.3 boiler							
outlet and No.7 turbine inlet	outlet and No.2 turbine inlet							
(Please refer Figure AP2-3.1.)	(Please refer Figure AP2-3.2.)							
•Surface temperature								
•Ambient temperature								
•Around wind velocity								
	CHP3 high pressure unit 15, 16 October 2013 56 points on main steam pipe linage between No.10 boiler outlet and No.7 turbine inlet (Please refer Figure AP2-3.1.) •Surface temperature •Ambient temperature •Around wind velocity							

Table AP2-4.1 Study contents for thermal diagnosis in FS of FY2013

Table AP2-4.2 Information of measuring equipment used in thermal diagnosis

Equipment	Item	Specification					
	Manufacture, type	Nippon Avionics Co., Ltd., InfReC R300					
	Temperature range	-40°C~500°C					
	Temperature resolution	0.03°C at 30°C					
Infrared	Temperature precision	±1°C					
thermography	Frame rate	60Hz					
	Pixel numbers	640×480pixels/320×240pixels					
	View angle	44°×34° (wide-angle lens attached)					
	Work environments	-15°C~50°C、 not excess of 90%RH					
	Manufacture, type	Anritsu Corporation, HFT-50					
Contact-type	Temperature range	-99.9°C∼499.9°C					
thermometer	Temperature resolution	0.1°C					
	Temperature precision	0°C and above:±(indicated value×0.05% +0.2)°C, less than 0°C:±0.5°C					
	Manufacture, type	FUSO Co., LM8000					
Digital multi-	Wind speed range	0.4~30m/s					
meter	Wind speed resolution	indicated resolution 0.1m/s					
	Wind speed precision	±3%F.S.					

 Image: space space

CHP-3 Main Steam Pipe (No.10 Boiler to No.7 Turbine) PART-2

Figure AP2-3.1 Measuring points for thermal diagnosis in FS of FY2013 (Main steam pipe linage between No.10 boiler outlet and No.7 turbine inlet at CHP3 high pressure unit)

CHP-4 Main Steam Pipe No.3 Boiler to No.2 Turbine

Figure AP2-3.2 Measuring points for thermal diagnosis in FS of FY2013 (Main steam pipe linage between No.3 boiler outlet and No.2 turbine inlet at CHP4)

The thermal diagnosis test for CHP3 was performed on 15 and 16 October in 2013. And the one for CHP4 was performed on 21 and 23 in October 2013. The season is seemed to close to be the annually-averaged one. According to the result of these tests, there was no measuring point for over 45 °C around main steam pipes.

Then the study was performed on 8-16 September in 2014. The season is seemed to be warmer than the annually-averaged one. According to the result of the study, ambient temperatures around main steam pipe for Boiler top positions where were most hottest within the CHP hovered around 45 $^{\circ}$ C.

Furthermore, according to data indoor working conditions at CHP3 and CHP4, there was no measuring point over 45 °C for annual average ambient temperatures around main steam pipes. So, for the purpose of identifying reference radiation heat quantity in conservative manner, 45°C is applied to the conservative value for ambient temperature around main steam pipe at CHP3 and CHP4.

The following values are shown in Table AP2-5.1 and Table AP2-5.2. For each of CHP3 and CHP4;

- Calculation values of radiation heat quantity according to thermographic image analysis for data measured by infrared thermography for thermal diagnosis in FS of FY2013
- Conservative values of radiation heat quantity adjusted as ambient temperature of 45°C

The results of the following analyses are shown in Figure AP2-4.1 and Figure AP2-4.2. For each of CHP3 and CHP4;

- Arrange all (conservative) values for radiation heat quantity in ascending order.
- Calculate the average value of all (conservative) values.
- Calculate the average value within 95% confidence interval
- Calculate the average value within 95% confidence interval (between θ -1.96 σ and θ +1.96 σ)
- •Calculate the average value up to the upper limit value of 95% confidence interval (θ +1.96 σ)

Table AP2-5.1 Calculation values of radiation heat quantity according to thermographic image analysis for data measured by infrared thermography for thermal diagnosis in FS of FY2013 and conservative value of radiation heat quantity adjusted by conservative ambient temperature (CHP3 high pressure unit)

			Thermog	raphic Mea	surement			Emissivity	C	bjective p	ipe		Radiation he	at quantity	,			Adjusted r	adiation hea	t quantity
					<i>c</i>		1					for				Internal	Ambient		-	
				Sur	face Te	mp.			Outside	Thickness covered by	diameter	radiative part	for convec	tive part		(Steam	temp. set	Radiation heat quantity	Data up to the upper	Data within
No.	Location	Ambient Temp	Wind velocity				Pipe direction		diameter of the existing	the existing thermal	existing			In case of	Total	temp.in	Conservati	adjusted by conservative	limit value of 95%	95% confidence
				Max.	Min.	Ave.			pipe	insulation material	insulation		In case of vestival pipe	horizontal pipe		the pipe)	veness	ambient	confidence interval	interval
						<u> </u>					material		l							
	No. 10 Poiler to Hander Dire	°C	m/s	271.1	°C	007	11	-	mm 272	mm 150	m 0.572	406	W/I 254	m ²	505	°C	°C	594	W/m ²	596
- 2	2 No.10 Boiler to Header Pipe	38.1	0.0	121.6	64.6	77.5	Horizontal	0.9	273	150	0.573	293	253	135	428	531	45.0	422	422	422
	No. 10 Boiler to Header Pipe	38.1	0.0	95.2	59.3	72.7	Horizontal	0.9	273	150	0.573	251	215	115	366	531	45.0	361	361	361
4	No. 10 Boiler to Header Pipe	38.1	0.0	166.7	40.4	102.5	Vertical	0.9	273	150	0.573	537	467	250	1004	531	45.0	990	572 990	572 990
(5 No. 10 Boiler to Header Pipe	36.1	0.0	187.7	54.1	105.8	Horizontal	0.9	273	150	0.573	586	516	275	861	531	45.0	846	846	846
8	No. 10 Boiler to Header Pipe	36.1	0.0	118.5	62.2	79.7	Horizontal	0.9	273	150	0.573	324	287	153	478	531	45.0	469	469	469
10	No. 10 Boiler to Header Pipe	35.0 35.0	0.0	204.3	<u>56.2</u> 62.1	95.0 98.8	Horizontal Vertical	0.9	273	150	0.573	477 517	427 462	228	706 978	531	45.0 45.0	691 958	691 958	691 958
11	No. 10 Boiler to Header Pipe	35.0	0.0	169.8	70.0	105.3	Horizontal	0.9	273	150	0.573	587	521	278	865	531	45.0	848	848	848
12	No. 10 Boiler to Header Pipe No. 10 Boiler to Header Pipe	35.0	0.0	215.6 224.9	69.5	108.6	Horizontal	0.9	273	150	0.573	624 410	552 368	295	<u>919</u> 606	531	45.0	900 594	900 594	900 594
14	No. 10 Boiler to Header Pipe	35.0	0.0	201.8	68.8	92.5	Horizontal	0.9	273	150	0.573	452	405	217	669	531	45.0	655	655	655
1.	5 No. 10 Boiler to Header Pipe	35.0	0.0	374.1	66.3	108.4	Horizontal	0.9	273	150	0.573	621	550	218	915	531	45.0	897	897	897
17	No. 10 Boiler to Header Pipe	35.0	0.0	100.3	50.2	69.4	Horizontal	0.9	273	150	0.573	242	213	114 296	356	531	45.0	349	349 905	349
19	No. 10 Boiler to Header Pipe	35.0	0.0	210.4	87.0	117.2	Horizontal	0.9	273	150	0.573	725	634	339	1063	531	45.0	1042	1042	1042
20	No. 10 Boiler to Header Pipe	35.0	0.0	155.1 168.0	91.1	109.5	Vertical	0.9	273	150	0.573	634 650	560 574	299	1194 956	531	45.0 45.0	937	937	937
22	2 No. 10 Boiler to Header Pipe	35.0	0.0	342.9	47.3	105.0	Horizontal	0.9	273	150	0.573	583	518	277	860	531	45.0	843	843	843
23	Header Pipe to No.7 Turbine	35.0 35.0	0.0	194.1 253.5	60.2	92.2	Horizontal Vertical	0.9	273	150	0.573	449 557	403 496	215	664 1053	531	45.0 45.0	651 1032	651 1032	651 1032
24	5 Header Pipe to No.7 Turbine	35.0	0.0	262.5	56.8	88.7	Vertical	0.9	159	150	0.459	415	372	210	787	528	45.0	771	771	771
20	7 Header Pipe to No.7 Turbine	35.0	0.0	4.51.4	47.5	84.1	Horizontal	0.9	159	150	0.459	348	333	188	524	528	45.0	548	548	548
28	Header Pipe to No.7 Turbine	35.0	0.0	135.1	49.9	82.5	Horizontal	0.9	159	150	0.459	356	319	180	537	528	45.0	526	526	526
30	Header Pipe to No.7 Turbine	35.0	0.0	139.8	62.0	85.3	Horizontal	0.9	159	150	0.459	382	343	185	576	528	45.0	564	559	559
31	Header Pipe to No.7 Turbine	35.0	0.0	148.4	46.2	74.7	Horizontal	0.9	159	150	0.459	287	255	213	431	528	45.0	422	422	422
33	Beader Pipe to No.7 Turbine	26.0	0.0	115.2	51.3	71.0	Vertical	0.9	159	150	0.459	307	298	169	606	528	45.0	583	583	583
34	Header Pipe to No.7 Turbine	26.0	0.0	140.6 87.3	40.9	62.8 65.8	Vertical Vertical	0.9	159	150	0.459	241 265	232	131	473	528	45.0 45.0	455	455	455
36	6 Header Pipe to No.7 Turbine	26.0	0.0	87.5	53.1	69.3	Vertical	0.9	159	150	0.459	293	284	161	577	528	45.0	556	556	556
38	Header Pipe to No.7 Turbine	26.0	0.0	121.1	53.1	75.0	Horizontal	0.9	159	150	0.459	356	346	196	528	528	45.0	531	531	531
39	Header Pipe to No.7 Turbine	26.0	0.0	130.1	58.8	84.8	Horizontal	0.9	159	150	0.459	429	417	235	664	528	45.0	639	639	639
40	Header Pipe to No.7 Turbine	26.0	0.0	192.4	36.3	71.2	Horizontal	0.9	159	150	0.459	309	300	169	478	528	45.0	460	460	460
42	2 Header Pipe to No.7 Turbine	26.0	0.0	97.9	32.0	52.2	Horizontal	0.9	159	150	0.459	163	152	86	249	528	45.0	239	239	239
4	Header Pipe to No.7 Turbine	26.0	0.0	265.9	31.2	60.1	Horizontal	0.9	159	150	0.459	221	211	119	340	528	45.0	327	327	327
45	5 Header Pipe to No.7 Turbine	26.0	0.0	101.5 94.9	38.5	59.1 63.0	Horizontal	0.9	159	150	0.459	213	203	115	328	528	45.0 45.0	316	316	316
47	Header Pipe to No.7 Turbine	26.0	0.0	76.3	44.7	58.4	Vertical	0.9	159	150	0.459	208	198	112	406	528	45.0	390	390	390
48	Header Pipe to No.7 Turbine Header Pipe to No.7 Turbine	26.0	0.0	220.2 361.4	36.7	80.8	Vertical Horizontal	0.9	159	150	0.459	392 452	382 438	216	774 699	528	45.0 45.0	673	745 673	745
50	Header Pipe to No.7 Turbine	26.0	0.0	447.6	62.4	140.2	Horizontal	0.9	159	150	0.459	1081	956	540	1621	528	45.0	1559	1105	1105
52	Header Pipe to No.7 Turbine	26.0	0.0	280.6	51.0	100.9	Horizontal	0.9	159	150	0.459	590	564	396	909	528	45.0	874	874	874
53	Header Pipe to No.7 Turbine	23.0	0.0	134.3	52.5	77.7	Vertical	0.9	159	150	0.459	381	381	215	762	528	45.0	728	728	728
55	5 Header Pipe to No.7 Turbine	23.0	0.0	163.9	50.0	77.5	Vertical	0.9	159	150	0.459	379	379	205	758	528	45.0	725	725	725
56	5 Header Pipe to No.7 Turbine	23.0	0.0	193.2	37.9	84.7	Vertical	0.9	159	150	0.459	444	443	250	887	528	45.0	848	848	848
	Average	31.3	0.0	-	-	86.6						Data No.		n	56	D	ata No.	56	54	54
											Sta	Average ndard devi	ation	q So	691.4 258.7	Standa	verage rd deviation	672.7	647	647
											The low	er limit valu fidence int	ie of 95% erval	q-1.96*s ₀	184.4	The lowe 95% conf	r limit value of idence interval	179.1		
											The upp	er limit val	ae of 95%	q+1.96*8.	1198.4	The uppe	r limit value of	1166.3		
											cor	indence int	erval			95% conf	uence interval			
	o 1800 –																			
	i i i																			
	1600																		-	
	er																Avera	ge valu	le for	all
	ã 5 1400 ∔- T	he u	nne	r lim	nit v	alue	of 9'	5% c	onfid	ence	inter	val·					data: 6	573 [W	/m ²]	
	0 <u>1</u>	170	ippe	/	nt v	aruc	01).) /0 C	onna	ence	inter	var.					/			
		1/0		/m-j																
		_	-											Ξ.1		7	ή	Averas	e valı	ie
	売じ ₁₀₀₀ 上													ւսՍ		X		within	95%	
	5° a																	confide	ence	
	it 2 800 ⊥										المعود	шl					1	intomio	1.	
	ant ant								_	أنبرر									1. 7/	
	du,							лШ								┢		547[W	/m²]	
	er					111			ווזי	[[]]	1177	[[]]	11111				\succ			
	up 100			$\mathbf{H}^{\mathbf{H}}$			1111		1111	ш	1111	ш	11111				À	verage	e valu	e
	1 i i i i i i i i i i i i i i i i i i i	111	1111		Th	e lov	ver lir	nit va	lue o	of 95	% cor	nfide	nce				u	p to th	e upp	er
	ie ti and it ie				int	erva	1::18	1[W	$/m^2$								li	mit val	ue of	
	ilia 200	'i H'	11#1	ĭ ₩ Ť	п I і	TIT	וודן ר	П	ΠŢΙ	тіт	יתוך	י רדן		ΠÌ			9	5% coi	nfider	ice
	ut a								1111		والماران		, de la dela	d d d d			in	iterval	:	
		and the set of					eranda ila ila				ليافياف مراجر مر		الراف فرام بر	and the West New York West	-	-	ر ۸	17 [W//	m ² 1	
																	04	•/ [••/	այ	

Figure AP2-4.1 Sorting figure for conservative radiation heat quantities (CHP3 high pressure unit)

Table AP2-5.2 Calculation values of radiation heat quantity according to thermographic image analysis for data measured by infrared thermography for thermal diagnosis in FS of FY2013 and conservative value of radiation heat quantity adjusted by conservative ambient temperature (CHP4)

			Thermog	raphic Mea	surement		1	Emissivity	0	bjective pi	pe		Radiation he	at quantity	/	Internal	Ambient	Adjusted 1	adiation hea	t quantity
			S	face Ter					Thickness	diamatar	IOT	for convec	tivo port		tann	temp set	Radiation	Data up to		
				Su	lace lei	np.			Outside	covered by	including the	radiarive	for convec	uve pan		tenp.	temp. set	heat quantity	the upper	Data within
No	Location	Ambient	Wind				Pine direction		diameter of	the existing	existing			In case of	Total	(Steam	for	adjusted by	limit value	95%
140.	Escation	Temp	speed	Max	Min	Ave	r ipe uncerion		the existing	thermal	thermal			horizontal		temp.in	Conservati	conservative	of 95%	confidence
									pape	material	insulation		an cana co rearran popul	pipe		the pipe)	veness	ambient	confidence	interval
							-				Baterial							temp.	interval	
		°C	m/s		°C			-	mm	mm	m		W/r	n ²		°C	°C		W/m ²	
1	Main steam pipe No.3 boiler to header	33.1	0.0	109.3	59.0	78.2	Horizontal	0.9	377	200	0.777	329	299	148	477	553	45.0	466	466	466
2	Main steam nine No 3 boiler to beader	33.1	0.0	196.6	53.3	70.8	Horizontal	0.9	377	200	0 777	265	239	118	384	553	45.0	375	375	375
	Main steam pipe 140.5 boller to header	22.1	0.0	70.0	55.5	(0.0	Horizontal	0.7	277	200	0.777	107	172	110	202	555	45.0	315	375	076
	Main steam pipe 180.5 boller to header	33.1	0.0	/8.3	55.0	62.2	Horizontal	0.9	3//	200	0.777	197	1/3	80	282	555	45.0	276	276	2/6
4	Main steam pipe No.3 boiler to header	35.1	0.0	93.5	56.2	66.1	Horizontal	0.9	5//	200	0.///	227	202	100	527	555	45.0	320	320	320
5	Main steam pipe No.3 boiler to header	33.1	0.0	101.5	57.0	73.7	Horizontal	0.9	377	200	0.777	290	262	130	420	553	45.0	410	410	410
6	Main steam pipe No.3 boiler to header	33.1	0.0	165.3	50.7	73.4	Horizontal	0.9	377	200	0.777	287	260	129	416	553	45.0	406	406	406
7	Main steam pipe No.3 boiler to header	33.1	0.0	373.1	66.6	150.7	Horizontal	0.9	377	200	0.777	1198	991	491	1689	553	45.0	1650		
8	Main steam nine No 3 boiler to header	33.1	0.0	96.7	53.0	68.2	Vertical	0.9	377	200	0 777	244	219	108	463	553	45.0	452	452	452
	Main securi ppe 110.5 coler to header	22.1	0.0	120.0	44.4	(2.4	Vertical	0.9	277	200	0.777	207	102		200	882	45.0	-102	270	-152
2	Wain steam pipe 10.3 boiler to header	33.1	0.0	120.0	44.4	03.4	vertical	0.9	311	200	0.777	200	102		300	555	45.0	319	3/9	3/9
10	Main steam pipe No.3 boiler to header	31.6	0.0	/5./	50.3	59.5	Vertical	0.9	5//	200	0.777	185	164	81	549	555	45.0	.540	340	.340
11	Main steam pipe No.3 boiler to header	31.6	0.0	192.1	44.1	59.2	Horizontal	0.9	377	200	0.777	182	162	80	263	553	45.0	256	256	256
12	Main steam pipe No.3 boiler to header	34.3	0.0	104.4	46.5	75.9	Horizontal	0.9	377	200	0.777	302	270	134	435	553	45.0	426	426	426
13	Main steam pipe No.3 boiler to header	34.3	0.0	161.3	48.4	62.9	Horizontal	0.9	377	200	0.777	195	169	84	279	553	45.0	273	273	273
14	Main steam pipe No.3 boiler to header	34.3	0.0	81.7	43.8	53.7	Horizontal	0.9	377	200	0.777	126	104	52	178	553	45.0	174	174	174
15	Main steam nine No 3 boiler to header	34.3	0.0	327.3	34.0	58.4	Vertical	0.9	377	200	0 777	161	137	68	297	553	45.0	291	291	291
14	Main steam pipe No.3 boiler to header	34.3	1 0.0	63.7	28.8	52.5	Havines	0.9	377	200	0.777	118	02	40	166	550	45.0	162	162	162
	initiali steam pipe 100.5 boller to header	34.3	0.0	03.7	30.0	34.3	norizontal	0.9	3//	200	0.777	110		48	100	555	45.0	162	102	102
17	Main steam pipe No.3 boiler to header	34.3	0.0	93.1	41.6	57.0	Horizontal	0.9	377	200	0.777	150	127	63	213	553	45.0	209	209	209
18	Main steam pipe No.3 boiler to header	33.2	0.0	385.3	40.3	59.6	Vertical	0.9	377	200	0.777	176	153	76	329	553	45.0	322	322	322
19	Main steam pipe No.3 boiler to header	33.2	0.0	54.0	44.3	49.2	Vertical	0.9	377	200	0.777	102	82	41	183	553	45.0	179	179	179
20	Main steam pipe No.3 boiler to header	33.2	0.0	179.0	42.8	63.1	Vertical	0.9	377	200	0.777	203	179	89	382	553	45.0	373	373	373
21	Main steam pipe No.3 boiler to header	33.2	0.0	77.7	42.1	58.6	Vertical	0.9	377	200	0.777	169	146	72	315	553	45.0	307	307	307
27	Main steam nine No 3 boiler to baadar	33.2	0.0	109.8	50.0	57.9	Vertical	0.9	377	200	0 777	163	1/1	70	304	552	45.0	209	209	208
22	Main steam pipe 140.5 boiler to header	22.2	0.0	224.1	29.1	72.2	Vertical	0.9	277	200	0.777	277	250	124	509	555	45.0	£16	516	516
- 23	Wain steam pipe 10.3 boiler to header	33.2	0.0	234.1	50.1	12.3	vertical	0.9	311	200	0.777	211	230	124	326	555	45.0	510	510	310
24	Main steam pipe No.3 boiler to header	35.2	0.0	219.2	52.4	69.4	Horizontal	0.9	5//	200	0.///	253	227	113	.366	555	45.0	357	357	357
25	Main steam pipe No.3 boiler to header	33.2	0.0	84.7	53.0	63.9	Horizontal	0.9	377	200	0.777	209	185	92	301	553	45.0	294	294	294
26	Main steam pipe No.3 boiler to header	33.2	0.0	338.6	64.5	89.2	Horizontal	0.9	377	200	0.777	430	392	194	624	553	45.0	610	610	610
27	Main steam pipe No.3 boiler to header	33.2	0.0	91.4	59.5	83.4	Horizontal	0.9	377	200	0.777	375	342	169	545	553	45.0	532	532	532
28	Main steam nine No 3 boiler to header	33.2	0.0	318.8	68.0	158.6	Horizontal	0.9	377	200	0.777	1324	1074	532	1856	553	45.0	1813		
	Main steam pipe No.2 boiler to header	22.2	0.0	200.2	77.7	172.0	Vertical	0.9	277	200	0.777	1572	1074	600	2802	553	45.0	2720		
	Main steam pipe No.3 boller to header	33.2	0.0	300.2	11.1	175.0	vertical	0.9	3//	200	0.777	15/2	1231	009	2805	555	45.0	2739		
	Main steam pipe No.3 boiler to header	35.2	0.0	331.7	/9.1	124.5	Vertical	0.9	5//	200	0.///	826	122		1549	555	45.0	1514		
31	Main steam pipe No.3 boiler to header	33.2	0.0	135.0	42.2	70.4	Horizontal	0.9	377	200	0.777	261	235	116	378	553	45.0	369	369	369
32	Main steam pipe No.3 boiler to header	33.2	0.0	106.6	49.6	69.7	Horizontal	0.9	377	200	0.777	256	230	114	369	553	45.0	361	361	361
33	Main steam pipe No.3 boiler to header	33.2	0.0	85.1	53.4	69.8	Horizontal	0.9	377	200	0.777	256	230	114	371	553	45.0	362	362	362
34	Main steam nine No 3 boiler to header	33.2	0.0	109.7	50.2	71.1	Horizontal	0.9	377	200	0.777	267	241	119	386	553	45.0	378	378	378
34	Main steam nine No 3 boiler to beader	33.2	0.0	292.2	57.6	78.8	Horizontal	0.9	377	200	0.777	334	303	150	484	553	45.0	473	473	473
26	Main steam pipe 110.5 coler to neuder	22.2	0.0	201.5	47.0	74.0	Tionzontal	0.9	277	200	0.777	202	264	121	422	540	45.0	413	413	413
	Main steam pipe header to No.2 turbine	33.2	0.0	201.5	47.0	74.0	Horizontal	0.9	311	200	0.777	292	204	151	422	549	45.0	413	415	413
	Main steam pipe header to No.2 turbine	35.2	0.0	100.1	54.9	68.5	Vertical	0.9	5//	200	0.777	244	219	108	46.5	549	45.0	452	452	452
38	Main steam pipe header to No.2 turbine	33.2	0.0	76.5	50.5	61.8	Vertical	0.9	377	200	0.777	193	169		362	549	45.0	354	354	354
39	Main steam pipe header to No.2 turbine	33.2	0.0	101.1	48.4	61.3	Horizontal	0.9	377	200	0.777	189	166	82	271	549	45.0	265	265	265
40	Main steam pipe header to No.2 turbine	33.2	0.0	123.6	51.9	60.5	Horizontal	0.9	377	200	0.777	183	160	79	262	549	45.0	256	256	256
41	Main steam pipe header to No.2 turbine	33.2	0.0	99.7	36.9	54.1	Horizontal	0.9	377	200	0.777	136	114	57	192	549	45.0	188	188	188
47	Main steam pipe header to No 2 turbine	33.2	0.0	254.9	52.0	93.7	Vertical	0.9	377	200	0.777	475	432	214	907	549	45.0	886	886	886
12	Main steam nine header to No.2 turbine	33.2	0.0	108.5	54.5	60.7	Vertical	0.9	277	200	0.777	256	220	11/	195	540	45.0	A74	A74	47.4
++3	Main steam pipe header to No.2 fulbline	22.2	0.0	144.6	45.7	69.1	verucal	0.9	277	200	0.777	2.30	230	100	250	549	45.0	240	240	2/2
	waan steam pipe neader to No.2 turbine	33.2	0.0	144.0	4.3.7	00.1	norizontal	0.9	3//	200	0.777	243	217	108	3.50	549	45.0	342	542	342
45	Main steam pipe header to No.2 turbine	33.2	0.0	104.9	57.5	71.2	Horizontal	0.9	377	200	0.777	268	242	120	388	549	45.0	379	379	379
46	Main steam pipe header to No.2 turbine	33.2	0.0	105.1	41.8	68.9	Horizontal	0.9	377	200	0.777	249	223	111	360	549	45.0	351	351	351
47	Main steam pipe header to No.2 turbine	33.2	0.0	94.0	51.4	64.6	Horizontal	0.9	377	200	0.777	215	190	94	309	549	45.0	302	302	302
48	Main steam pipe header to No.2 turbine	33.2	0.0	199.7	40.6	58.5	Horizontal	0.9	377	200	0.777	168	145	72	240	549	45.0	234	234	234
49	Main steam pipe header to No.2 turbine	33.2	0.0	144.7	43.9	66.6	Horizontal	0.9	377	200	0.777	230	206	102	332	549	45.0	325	325	325
50	Main steam pipe header to No 2 turbine	33.2	0.0	123.3	49.5	78.7	Horizontal	0.9	377	200	0.777	333	303	150	482	549	45.0	471	471	471
61	Main steam pine header to No.2 turbine	33.2	1 0.0	103.7	61.7	70.5	Havisast	0.9	377	200	0.777	340	300	152	402	5/0	45.0	401	401	492
- 31	waan steam pipe neader to No.2 turbine	33.4	0.0	105.7	04.7	79.0	nonzontal	0.9	3//	200	0.777	240	309	1.13	475	549	45.0	482	482	462
52	Main steam pipe header to No.2 turbine	55.2	0.0	168.2	60.3	78.0	Vertical	0.9	377	200	0.777	526	297	147	623	549	45.0	609	609	609
53	Main steam pipe header to No.2 turbine	33.2	0.0	469.3	54.5	101.6	Vertical	0.9	377	200	0.777	557	504	249	1061	549	45.0	1036	1036	1036
54	Main steam pipe header to No.2 turbine	33.2	0.0	85.3	55.5	65.5	Vertical	0.9	377	200	0.777	222	197	98	419	549	45.0	409	409	409
55	Main steam pipe header to No.2 turbine	33.2	0.0	169.1	42.4	73.5	Vertical	0.9	377	200	0.777	287	260	129	547	549	45.0	535	535	535
56	Main steam pipe header to No.2 turbine	33.2	0.0	161.3	49.5	68.0	Horizontal	0.9	377	200	0.777	242	216	107	349	549	45.0	341	341	341
57	Main steam pipe header to No 2 turbing	33.2	0.0	105.3	51.3	70.6	Horizontal	0.9	377	200	0 777	263	227	117	380	5/10	45.0	372	377	372
- 57	Main steam ping herder to No.2 turbine	33.2	0.0	140.5	53.2	66.2	Ham	0.9	277	200	0.777	205	207	101	200	549	45.0	221	201	201
36	siman seam pipe header to No.2 turbine	33.4	0.0	140.3	33.3	00.5	norizontal	0.9	3//	200	0.777	220	205	101	329	549	45.0	321	321	521
L	Average	33.2	0.0	160.0	51.1	74.0										-				
												Data No.		n	58	Da	ata No.	58	52	52
												Average		q	502.1	A	/erage	490.7	383	383
											Sta	ndard devia	ation	So	447.0	Standar	d deviation	436.8		
											The loss	or limit u-b-	o. of 05%	~0		The locus	limit voluo - f			
											The low	fidence int-	arval	q -1.96* s_0	-373.9	05% confi	dence interval	-365.4		
											The					The up	- Emit on hos	-		
											The upp	er imit valu	te 01 95%	q+1.96*s0	1378.2	Ine upper	r nmit value of	1346.8		
											COL	muence into	erväl			95% confi	uence interval			

Figure AP2-4.2 Sorting figure for conservative radiation heat quantities (CHP4)

For each CHP3 and CHP4, the average value up to the upper limit value of 95% confidence interval is applied to the representative value for reference radiation heat quantity (parameter fixed ex ante) in conservative manner.

Table AP2-6 The representative value for reference radiation heat quantity qR_{RE} (parameter fixed ex ante)

Reference radiation heat quantity (before thermal insulation	$qR_{{\it RE,CHP3}\ hp}$	647	W/m^2
installation) from main steam pipe linage at CHP3 high			
pressure unit			
Reference radiation heat quantity (before thermal insulation	$qR_{RE,CHP4}$	383	W/m ²
installation) from main steam pipe linage at CHP4			

Identification of representative value of initial thermal insulation efficiency of the project thermal insulation material (parameter fixed ex ante)

As for thermographic image analysis of data measured by infrared thermography and contact type thermo-meter at 6 sampling installation areas of project thermal insulation material, pixels for the total area within the main steam pipe are extracted for each of 4 positions (1 position for non-installation and 3 installation positions for thickness of 10mm, 20mm and 40mm) in both of the case without installation and the one with installation.

Then, the average surface temperatures for the extracted pixels was calculated and converted to the radiation heat quantity from the extracted area based on equation JIS A9501.

In case of comparing radiation heat quantity between measurement value by heat flow meter and calculation value based on data according to thermographic image analysis by infrared thermography, pixels for only area attached by the heat flow sensor were extracted. While on the other hand, pixels for the total area within the main steam pipe are extracted in this case. Because data analysis targeted for wide area is better for the purpose of evaluating thermal insulation efficiency.

Figure AP2-5.1. Example of thermographic image pixels extracted for the total area within the main steam pipe without installation of project thermal insulation material

Figure AP2-5.2 Example of thermographic images pixels extracted for the total area within the main steam pipe with installation of project thermal insulation material

As already mentioned in Appendix 1, measurements by infrared thermography were performed with and without installation of the project thermal insulation material at same positions of each area.

At each area,

•Radiation heat quantities from 4 positions in status without installation of project thermal insulation material are assumed as $q_{0,unins}$, $q_{1,unins}$, $q_{2,unins}$ and $q_{4,unins}$

•Radiation heat quantities from 4 positions in status without installation of project thermal insulation material are assumed as $q_{0,ins}$, $q_{1,ins}$, $q_{2,ins}$ and $q_{4,ins}$

as Table AP2-7, Figure AP2-6.1 and Figure AP2-6.2 show;

	Without installation of project thermal insulation material	With installation of project thermal insulation material
Radiation heat quantity from non-installation position [W/m ²]	$q_{0,unins}$	$q_{0,ins}$
Radiation heat quantity from installation position for thickness of 10mm [W/m ²]	$q_{1,unins}$	$\mathbf{q}_{1,\mathrm{ins}}$
Radiation heat quantity from installation position for thickness of 20mm [W/m ²]	q _{2,unins}	q _{2,ins}
Radiation heat quantity from installation position for thickness of 40mm [W/m ²]	Q4,unins	q _{4,ins}

Table AP2-7 Assumed values for radiation heat quantity

Figure AP2-6.1 Imaging figure of radiation heat quantity without sampling installation of the

project thermal insulation material at each area

Figure AP2-6.2 Imaging figure of radiation heat quantity with sampling installation of the project thermal insulation material at each area

In that case, the decreasing rate of radiation heat quantity by project thermal insulation material at each area of 4 ones can be expressed as follows;

•In case of installation thickness of 10mm

```
q_{1,ins}/q_{1,unins} \times (q_{0,ins}/q_{0,unins})
```

```
•In case of installation thickness of 20mm
```

```
q_{2,ins}/q_{2,unins} \times (q_{0,ins}/q_{0,unins})
```

- •In case of installation thickness of 40mm
- $q_{4,ins} \! / q_{4,unins} \! \times \! (q_{0,ins} \! / q_{0,unins})$

Radiation heat quantities from 4 positions at 6 areas are shown in in Table AP2-8. Then, decreasing rate of radiation heat quantity by project thermal insulation material is shown in Table AP2-8 and Figure AP2-7.

Table AP2-8 Radiation heat quantities from 4 positions at 6 areas and the decreasing rate of radiation heat quantity by project thermal insulation material

	Sampling installation zone	Setting area				Pipe dia	meter inform	ation			Wind	Surface temp.	Calculation values of radiation heat quantity based on JIS A9501	Decreasin g rate of radiation heat
CHP name			Sampling installation status	Measurement date	Outside diameter of the existing pipe	Thickness covered by the existing thermal insulation material	Thickness installed by the project thermal insulation material	Total outside diameter	Pipe direction	Ambient Temp.	Wind speed	Total area within the main steam pipe in the view of infrared thermography	Total area within the main steam pipe in the view of infrared thermography	quantity by project thermal insulation material
					mm	mm	mm	m		°C	m/s	°C	W/m²	Non- dimension
	No.12 Boiler to Header (B middle)	Non-installation area	Uninstalled	10/09/2014	273	150	0	0.573	Horizontal	38.2	0.0	93.1	643	7
	No.12 Boiler to Header (B middle)	10mm installation area	Uninstalled	10/09/2014	273	150	0	0.573	Horizontal	38.2	0.0	84.6	522	\square
	No.12 Boiler to Header (B middle)	20mm installation area	Uninstalled	10/09/2014	273	150	0	0.573	Horizontal	38.2	0.0	94.5	664	
	No.12 Boiler to Header (B middle)	40mm installation area	Uninstalled	10/09/2014	273	150	0	0.573	Horizontal	38.2	0.0	95.6	680	\sim
	No.12 Boiler to Header (B middle)	Non-installation area	Installed	10/09/2014	273	150	0	0.573	Horizontal	32.4	0.0	83.1	562	1.00
	No.12 Boiler to Header (B middle)	10mm installation area	Installed	10/09/2014	273	150	10	0.593	Horizontal	32.4	0.0	57.7	244	0.53
	No.12 Boiler to Header (B middle)	20mm installation area	Installed	10/09/2014	273	150	20	0.613	Horizontal	32.4	0.0	52.5	186	0.32
	No.12 Boiler to Header (B middle)	40mm installation area	Installed	10/09/2014	273	150	40	0.653	Horizontal	32.4	0.0	48.9	148	0.25
	No.10 Boiler to Header (B Middle)	Non-installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	35.0	0.0	98.2	/54	
01100	No.10 Boiler to Header (B Middle)	10mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	35.0	0.0	77.0	453	
CHP3	No.10 Boiler to Header (B Middle)	20mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	35.0	0.0	80.2	496	/
nign	No.10 Boiler to Header (B Middle)	40mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	35.0	0.0	/4.6	422	100
pressure	No.10 Boller to Header (B Middle)	Non-installation area	Installed	13/09/2014	2/3	150	0	0.573	Horizontal	28.5	0.0	90.4	/06	1.00
unit	No.10 Boller to Header (B Middle)	10mm installation area	Installed	13/09/2014	273	150	10	0.593	Horizontal	28.5	0.0	61.3	322	0.76
	No.10 Boller to Header (B Middle)	20mm Installation area	Installed	13/09/2014	2/3	150	20	0.613	Horizontal	28.5	0.0	54.8	248	0.53
	No.10 Boller to Header (B Middle)	40mm installation area	Installed	13/09/2014	2/3	150	40	0.653	Horizontal	28.5	0.0	47.7	1/1	0.43
	No.13 Boller to Header (B top)	10mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	44.5	0.0	09.2	237	/
	No.13 Boller to Header (B top)	Comministaliation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	44.5	0.0	77.4	364	/
	No.13 Boller to Header (B top)	20mm installation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	44.5	0.0	07.1	309	
	No 12 Deiler to Header (D top)	Non lostallation area	Uninstalled	13/09/2014	273	150	0	0.573	Horizontal	44.3	0.0	60.6	403	1.00
	No.13 Boller to Header (B top)	10mm installation area	Installed	13/09/2014	273	150	10	0.573	Horizontal	20.1	0.0	6.60	210	0.71
	No 12 Poiler to Header (B top)	20mm installation area	Installed	12/00/2014	273	150	20	0.555	Horizontal	20.1	0.0	62.4	313	0.71
	No 12 Poiler to Header (B top)	40mm installation area	Installed	12/00/2014	273	150	20	0.013	Horizontal	20.1	0.0	57.0	170	0.32
	Header Ripa	Non-installation area	Installed	11/00/2014	273	200	40	0.000	Horizontal	27.0	0.0	57.2	202	0.20
	Header Pipe	10mm installation area	Uninstalled	11/09/2014	377	200	0	0.777	Horizontal	37.9	0.0	67.9	302	/
	Header Pipe	20mm installation area	Uninstalled	11/09/2014	277	200	0	0.777	Horizontal	27.0	0.0	67.0	204	/
	Header Pipe	40mm installation area	Uninstalled	11/09/2014	377	200	0	0.777	Horizontal	27.0	0.0	67.2	302	
	Header Pipe	Non-installation area	Installed	12/00/2014	377	200	0	0.777	Horizontal	37.9	0.0	67.3	295	1.00
	Header Pipe	10mm installation area	Installed	12/09/2014	377	200	10	0.707	Horizontal	40.5	0.0	60.1	187	0.70
	Header Pine	20mm installation area	Installed	12/09/2014	377	200	20	0.817	Horizontal	40.5	0.0	61.4	201	0.70
	Header Pine	40mm installation area	Installed	12/09/2014	377	200	40	0.857	Horizontal	40.5	0.0	52.9	112	0.40
	No 3 Boiler to Header (B top)	Non-installation area	Ininstalled	15/09/2014	377	200	.0	0.777	Horizontal	43.0	0.0	66.6	236	<u> </u>
	No 3 Boiler to Header (B top)	10mm installation area	Ininstalled	15/09/2014	377	200	0	0.777	Horizontal	43.0	0.0	75.1	338	
	No.3 Boiler to Header (B top)	20mm installation area	Uninstalled	15/09/2014	377	200	0	0.777	Horizontal	43.0	0.0	72.9	311	/
0.10	No.3 Boiler to Header (B top)	40mm installation area	Uninstalled	15/09/2014	377	200	0	0.777	Horizontal	43.0	0.0	68.9	263	/
CHP4	No.3 Boiler to Header (B top)	Non-installation area	Installed	12/09/2014	377	200	0	0.777	Horizontal	39.9	0.0	69.9	306	1.00
	No.3 Boiler to Header (B top)	10mm installation area	Installed	12/09/2014	377	200	10	0.797	Horizontal	39.9	0.0	69.7	303	0.69
	No.3 Boiler to Header (B top)	20mm installation area	Installed	12/09/2014	377	200	20	0.817	Horizontal	39.9	0.0	66.2	261	0.65
	No.3 Boiler to Header (B top)	40mm installation area	Installed	12/09/2014	377	200	40	0.857	Horizontal	39.9	0.0	58.5	175	0.51
	No.5 Boiler to Header (B top)	Non-installation area	Uninstalled	16/09/2014	377	200	0	0.777	Horizontal	38.5	0.0	65.8	271	\sim
	No.5 Boiler to Header (B top)	10mm installation area	Uninstalled	16/09/2014	377	200	0	0.777	Horizontal	38.5	0.0	66.3	277	\sim
	No.5 Boiler to Header (B top)	20mm installation area	Uninstalled	16/09/2014	377	200	0	0.777	Horizontal	38.5	0.0	67.1	286	\sim
	No.5 Boiler to Header (B top)	40mm installation area	Uninstalled	16/09/2014	377	200	0	0.777	Horizontal	38.5	0.0	65.5	268	\sim
	No.5 Boiler to Header (B top)	Non-installation area	Installed	12/09/2014	377	200	0	0.777	Horizontal	35.4	0.0	62.2	260	1.00
	No.5 Boiler to Header (B top)	10mm installation area	Installed	12/09/2014	377	200	10	0.797	Horizontal	35.4	0.0	58.2	215	0.81
	No.5 Boiler to Header (B top)	20mm installation area	Installed	12/09/2014	377	200	20	0.817	Horizontal	35.4	0.0	57.4	206	0.75
1	No.5 Boiler to Header (B top)	40mm installation area	Installed	12/09/2014	377	200	40	0.857	Horizontal	35.4	0.0	51.5	144	0.56

Figure AP2-7 Decreasing rate of radiation heat quantity according to installation thickness of project thermal insulation material

Decreasing rates of radiation heat quantity according to installation thickness of project thermal insulation material at 6 sampling installation areas were plotted in Figure AP2-7. Furthermore, an exponential approximation formula $(y=e^{-0.025x})$ for them was entered. As a consequence, it

follows that the contributing rate is 0.6812 (the correlation coefficient is 0.8524.). One could argue that this correlation is significant to a satisfactory extent although sample correlation coefficient is 0.575067 in case of in case sample size of 19 (n=19) and significance level of 1% (α =0.01).

According to the exponential approximation formula, initial thermal insulation efficiency of the project thermal insulation material (=1–decreasing rate) equals to 0.22 (in case of installation thickness of 10mm), 0.39 (in case of installation thickness of 20mm) and 0.63 (in case of installation thickness of 40mm). These values are applied to the representative value for initial thermal insulation efficiency of the project thermal insulation material (parameter fixed ex ante) as the common ones between CHP3 and CHP4.

Table AP2-9. The representative value for initial thermal insulation efficiency of the project thermal insulation material $f_{PJI-eff}$ (parameter fixed ex ante)

Initial thermal insulation efficiency in case of installation thickness of 10mm	0.22	Nor	
Initial thermal insulation efficiency in case of installation thickness of 20mm	0.39	NON-	
Initial thermal insulation efficiency in case of installation thickness of 40mm	0.63	dimension	

Generally speaking, insulation effect at high surface temperature area is higher than one at low surface temperature area.

In this study, sampling installation works have been comparatively carried out at low temperature areas with the objective of safety at both of CHP3 and CHP4.

Therefore, actual performance for insulation effect is expected to be higher than result by this study.

In spite of data analysis with a certain amount of variation, the representative value for initial thermal insulation efficiency by the project thermal insulation material was calculated according to the approximation formula. However, quantification of project radiation heat quantity (after thermal insulation installation) $qR_{PJ,y}$ is performed in conservative manner due to the following reasons;

• In this study, sampling installation works have been carried out at low temperature positions of existing surface with the objective of safety at both of CHP3 and CHP4. So, performance of insulation effect for this study is thought to be lower than the actual one.

• Project radiation heat quantity is calculated by multiplying reference radiation heat quantity by initial thermal insulation efficiency of the project thermal insulation material. Reference radiation heat quantity qR_{RE} (parameter fixed ex ante) is identified as considerable conservative value.

Appendix 3

Formulae for calculation of radiation quantity of heat based on JIS A9501 (Standard practice for thermal insulation works)

Calculation of radiating quantity of heat

1) Measurement data

•Ambient temperature θa [°C] by actual measurement

•Average surface temperature θse [°C] by actual measurement

•Wind velocity w [m/s] by actual measurement

•Emissivity ε [-] by comparison of thermographic images and actual measurements

•Exterior diameter of thermal insulation materials *De* [m] by actual measurements or plant specification

2) Calculation of radiative part of surface coefficient (*hr*) [W/m²·K] $hr = \varepsilon \delta \times \{(\theta se + 273.15)^4 - (\theta a + 273.15)^4\}/(\theta se - \theta a)$ δ :Stefan Boltzmann coefficient (=5.67×10⁻⁸) [W/m²·K⁴]

3) Calculation of convective part of surface coefficient (hcv) [W/m²·K]

i) Upward plane

```
hcv = 3.26 \times (\theta se - \theta a)^{0.25} \times \{(w + 0.348)/0.348\}^{0.5}
```

ii) Downward plane

```
hcv = 2.28 \times (\theta se - \theta a)^{0.25} \times \{(w + 0.348)/0.348\}^{0.5}
```

- iii) Vertical plane and pipe
- •In case $Abs(\theta se \theta a) \ge 10^{\circ}C$

 $hcv=2.56\times(\theta se-\theta a)^{0.250}\times\{(w+0.348)/0.348\}^{0.5}$

•In case Abs($\theta se - \theta a$)<10°C

 $hcv = (3.61 + 0.094 \times (\theta se - \theta a)) \times \{(w + 0.348)/(0.348)\}^{0.5}$

v) Horizontal pipe

```
hcv=1.19\times((\theta se-\theta a)/De)^{-0.250}\times\{(w+0.348)/0.348\}^{0.5}
```

- 4) Calculation of surface coefficient of heat transfer (hse) $[W/m^2 \cdot K]$ hse = hr + hcv
- 5) Calculation of radiating quantity of heat (q) [W/m²] $q=hse\times(\theta se-\theta a)$

Conversion of radiating quantity of heat by ambient temperature

 $q' = (\theta i - \theta a')/(\theta i - \theta a) \times q$

q	Radiating quantity of heat before conversion	W/m ²
q'	Radiating quantity of heat after conversion	W/m^2
ва	Ambient temperature before conversion	°C
θa'	Ambient temperature for conversion	°C
θi	Temperature of internal fluid before conversion	°C

Appendix 4

Identification of decreasing rate from initial thermal insulation efficiency of the project thermal insulation material according to measurement data thermal conductivity for project thermal insulation material in conservative manner

Table AP4-1 Parameters list related to heat quantity in 3 cases (Reference status, initial status of project activity and Status for used project thermal insulation material) and magnitude relation of them

	Physical situation for heat transfer in reference case (Non-installa tion of project thermal insulation material)		Physical situation for heat transfer at the progressed time of project activity (Just after y years later since installation of project thermal insulation materials)		Physical situation for heat transfer at the starting time of project activity (Just when new project thermal insulation materials are installed)
Radiation heat quantity [W/m ²]	qR_{NI}	>	$qR_{PJI,y}$	>	$qR_{PJI,0}$ (well-known)
Thickness of existing thermal insulation material [m]	<i>d</i> _{ExtI} (well-known)	=	<i>d</i> _{ExtI} (well-known)	=	d_{ExtI} (well-known)
Thickness of project thermal insulation material [m]			<i>d</i> _{PJI} (well-known)	=	<i>d</i> _{PJI} (well-known)
Internal fluid (steam) temp. [°C]	<i>θis</i> (well-known and const.)	=	<i>θis</i> (well-known)	=	<i>θis</i> (well-known)
Interfacial temp between existing thermal insulation material and project one [°C]			hetais _{PJ,y}	<	<i>θis_{PJ,o}</i> (well-known by theoretical calculation)
Surface temp. [°C]	θse_{ExtI} (well-known)	>	$\theta se_{PJI,y}$	>	$ heta se_{PII,0}$ (well-known)
Ambient temp. [°C]	θa_{NI} (well-known)	>	$\theta a_{PJ,y}$	>	$ heta_{PJ,0}$ (well-known)
Thermal conductivity of existing thermal insulation material [W/m·K]	$\lambda_{ExtI,NI}$ (well-known)	<	$\lambda_{ExtI,y}$	<	$\lambda_{ExtI,0}$ (well-known by theoretical calculation)
Thermal conductivity of project thermal insulation material [W/m·K]			$\lambda_{PJI,y}$ (by actual measurement)	>	$\lambda_{PJI,0}$ (by actual measurement)
Surface coefficient of heat transfer $[W/m^2 \cdot K]$	α_{ExtI} (well-known)	<	$\alpha_{PJI,y}$	<	$\alpha_{PJI,0}$ (well-known)

Figure AP4-1.1 Outline drawing of heat transfer in reference case

Figure AP4-1.2 Outline drawing of heat transfer at the starting time of project activity

Figure AP4-1.3 Outline drawing of heat transfer at the progressed time of project activity

Figure AP4-1.4 Overlapping display of all statuses

For heat transfer at the starting time of project activity (Just when new project thermal insulation materials are installed), parameters in Table AP4-1 are theoretically shown as the following relational expression;

$$qR_{PJ,0} = \frac{\theta is - \theta if_{PJ,0}}{\frac{d_{ExtI}}{\lambda_{Ext,0}}} = \frac{\theta if_{PJ,0} - \theta se_{PJI,0}}{\frac{d_{PJI}}{\lambda_{PJI,0}}} = \frac{\theta se_{PJI,0} - \theta a_{PJ,0}}{\frac{1}{\alpha_{PJ,0}}} = \frac{\theta is - \theta a_{PJ,0}}{\frac{d_{ExtI}}{\lambda_{Ext,0}} + \frac{d_{PJI}}{\lambda_{PJI,0}} + \frac{1}{\alpha_{PJI,0}}}$$
(4-1)

Next, for heat transfer at the progressed time of project activity (Just after y years later since installation of project thermal insulation materials), parameters in Table AP4-1 are theoretically

shown as the following equation;

$$qR_{PJ,y} = \frac{\theta is - \theta a_{PJ,y}}{\frac{d_{ExtI}}{\lambda_{Ext,y}} + \frac{d_{PJI}}{\lambda_{PJI,y}} + \frac{1}{\alpha_{PJ,y}}}$$
(4-2)

Since $\theta a_{PJ,y} > \theta a_{PJ,0}$, $\lambda_{ExtI,y} < \lambda_{ExtI,0}$ and $\alpha_{PJI,0} < \alpha_{PJI,y}$ just as it happened, $qR_{PJ,y}$ can be conservatively calculated as the following equation in case that we have an assumption that $\theta a_{PJ,y} = \theta a_{PJ,0}$, $\lambda_{ExtI,y} = \lambda_{ExtI,0}$ and $\alpha_{PJI,0} = \alpha_{PJI,y}$;

$$qR_{PJ,y} = \frac{\theta is - \theta a_{PJ,0}}{\frac{d_{ExtI}}{\lambda_{Ext,0}} + \frac{d_{PJI}}{\lambda_{PJI,y}} + \frac{1}{\alpha_{PJ,0}}}$$
(4-2)'

Furthermore, according to "G. Calculation equations of project emissions project emissions", $qR_{PJ,0}$ and $qR_{PJ,y}$ are shown as the following equations;

$$\begin{split} qR_{PJ,0} = qR_{RE}^*(1 - f_{PJI\text{-}eff}) \\ qR_{PJ,y} = qR_{RE}^*\{1 - f_{PJI\text{-}eff} \times (1 - f_{PJI\text{-}dec,y})\} \end{split}$$

qR_{RE}	Reference radiation heat quantity (before thermal insulation installation) from main steam pipe linage at the thermal power plant ←Parameter fixed ex-ante	W/m ²
f _{PJI-eff}	Initial thermal insulation efficiency by the project thermal insulation material ←Parameter fixed ex-ante	Non- dimension
fpJI-deс•y	Decreasing rate from initial thermal insulation efficiency of the project thermal insulation material ←Monitoring parameter	Non- dimension

So, $f_{PJI-dec,y}$ is shown as the following equations;

$$f_{PJI-dec,y} = 1 - \frac{1}{f_{PJI-eff}} + qR_{PJ,y} \times \frac{1 - f_{PJI-eff}}{qR_{PJ,0}} + qR_{PJ,0} + \frac{1}{f_{PJI-eff}}$$
(4-3)

On the other hand, the following 2 parameters are actually measured.

$\lambda_{PJI,0}$	Thermal conductivity of new project thermal insulation material (before installation)	W/m•K
$\lambda_{PJI,y}$	Thermal conductivity of used project thermal insulation material after y years later since installation	W/m•K

For now, we have an assumption that $\lambda_{PJI,y}$ would be higher by 10% than $\lambda_{PJI,0}$.

Furthermore, if we apply above-mentioned 3 relational expression ((4-1), (4-2)' and (4-3)) to thermographic image data in Table AP2-8 (Radiation heat quantities from 4 areas at 6 positions and the decreasing rate of radiation heat quantity by project thermal insulation material), $f_{PJI-dec,y}$ can be calculated based on $qR_{PJ,y}$ of calculated value and $f_{PJI-eff}$ of parameter fixed ex-ante as the following table;

Table AP4-2 Identification of decreasing rate from initial thermal insulation efficiency of the project thermal insulation material ($f_{PII-dec,y}$)

CHP &	サンプル施工ゾーン	設定箇所	サンブル施 工状態	計測日	プロジェクト 保温材の 初期状態 からの放散 熱量	内部蒸気温度	界面温度	既存保温 材厚み	戦存保温材 の熱伝導率	界面温度	プロジェクト 保温材の表 面温度	プロジェクト 保温材の 厚み	プロジェクト保温 村の熱伝導率	プロジェクト保 温材の表面 温度	周辺環境 温度	表面熱伝導 率	プロジェクト保温 材の、使用前に 対する、使用後 の熱伝導率上 昇率	使用後のプロ ジェクト保温材 の熱伝導率	(使用後の)プロ ジェク保温材から の放散熱量	放散熱量の上 昇率	当初の断 熱効率	当初の新熱効果からの低減率
					qR _{Pubb}	00S	0fp ₂₀	d _{Est}	λ_{6with}	0f _{P20}	0sep.go	dea	λριμο	0sep.go	Өаруз	$\alpha_{\mu,\mathbf{g}_{\mathbf{d}}}$	$\lambda_{P,E_F}/\lambda_{P,E_F}{=}1.0$	$\lambda_{0,2\gamma}$	$\begin{array}{l} qR_{p_{2,y}}qR_{p_{2,0}}\\ \ast(1-f_{p_{22}-dexy})\end{array}$	(qR _{PJp} - qR _{PJD})/qR _{PJD}	f _{Pd-eff}	$\begin{split} f_{\rho_{ab \rightarrow may}} &= 1 - 1/f_{\rho_{ab \rightarrow 0}} + \\ q_{q \rho_{ab}} * (1 - f_{\rho_{ab \rightarrow 0}})/q_{q \rho_{ab}}/f_{\rho_{ab \rightarrow 0}} \end{split}$
_					W/m ²	°C	°C	m	W/m•K	°C	°C	m	W/m•K	°C	°C	W/m ² •K	-	W/m•K	W/m ²	-	-	-
CHP3	No.12 Boiler to Header (B middle)	10mm installation area	Installed	10/09/2014	243.6	530	159.2	0.150	0.09854	159.2	57.7	0.010	0.02400	57.7	32.4	9.6281	0.1000	0.02640	248.2	0.0189	0.22	0.0670
	No.12 Boiler to Header (B middle)	20mm installation area	Installed	10/09/2014	186.3	530	207.8	0.150	0.08675	207.8	52.5	0.020	0.02400	52.5	32.4	9.2706	0.1000	0.02640	191.8	0.0292	0.39	0.0457
	No.12 Boller to Header (B middle)	40mm installation area	installed	10/09/2014	148.2	530	295.8	0.150	0.09491	295.8	48.9	0.040	0.02400	48.9	32.4	8.9/9/	0.1000	0.02640	155.2	0.04/2	0.63	0.0277
	No.10 Boiler to Header (B Middle)	10mm installation area	installed	13/09/2014	322.4	530	195.6	0.150	0.14464	195.6	61.3	0.010	0.02400	61.3	28.5	9.8298	0.1000	0.02640	330.5	0.0250	0.22	0.0885
	No.10 Boiler to Header (B Middle)	20mm installation area	installed	13/09/2014	247.9	530	261.4	0.150	0.13840	261.4	54.8	0.020	0.02400	54.8	28.5	9.4245	0.1000	0.02640	257.5	0.0389	0.39	0.0608
	No.10 Boiler to Header (B Middle)	40mm installation area	installed	13/09/2014	171.5	530	333.5	0.150	0.13092	333.5	47.7	0.040	0.02400	47.7	28.5	8.9317	0.1000	0.02640	180.9	0.0546	0.63	0.0321
	No.13 Boiler to Header (B top)	10mm installation area	installed	13/09/2014	318.8	530	202.6	0.150	0.14607	202.6	69.8	0.010	0.02400	69.8	39.1	10.3844	0.1000	0.02640	326.8	0.0252	0.22	0.0894
	No.13 Boiler to Header (B top)	20mm installation area	installed	13/09/2014	230.7	530	254.6	0.150	0.12565	254.6	62.4	0.020	0.02400	62.4	39.1	9.8999	0.1000	0.02640	239.2	0.0369	0.39	0.0577
	No.13 Boiler to Header (B top)	40mm installation area	installed	13/09/2014	172.1	530	344.0	0.150	0.13874	344.0	57.2	0.040	0.02400	57.2	39.1	9.5063	0.1000	0.02540	181.7	0.0561	0.63	0.0329
CHP4	Header Pipe	10mm installation area	Installed	12/09/2014	187.4	550	138.2	0.200	0.09104	138.2	60.1	0.010	0.02400	60.1	40.5	9.5636	0.1000	0.02640	190.1	0.0141	0.22	0.0501
	Header Pipe	20mm installation area	installed	12/09/2014	201.3	550	229.2	0.200	0.12550	229.2	61.4	0.020	0.02400	61.4	40.5	9.6325	0.1000	0.02640	207.5	0.0309	0.39	0.0483
	Header Pipe	40mm installation area	Installed	12/09/2014	111.6	550	239.0	0.200	0.07178	239.0	52.9	0.040	0.02400	52.9	40.5	9.0026	0.1000	0.02640	115.5	0.0343	0.63	0.0202
	No.3 Boiler to Header (B top)	10mm installation area	Installed	12/09/2014	302.7	550	195.8	0.200	0.17092	195.8	69.7	0.010	0.02400	69.7	39.9	10.1571	0.1000	0.02640	309.6	0.0230	0.22	0.0815
	No.3 Boiler to Header (B top)	20mm installation area	installed	12/09/2014	261.2	550	283.9	0.200	0.19627	283.9	66.2	0.020	0.02400	66.2	39.9	9.9310	0.1000	0.02640	271.7	0.0404	0.39	0.0631
	No.3 Boiler to Header (B top)	40mm installation area	Installed	12/09/2014	175.0	550	350.2	0.200	0.17527	350.2	58.5	0.040	0.02400	58.5	39.9	9.4112	0.1000	0.02640	184.6	0.0548	0.63	0.0322
	No.5 Boiler to Header (B top)	10mm installation area	Installed	12/09/2014	215.4	550	147.9	0.200	0.10713	147.9	58.2	0.010	0.02400	58.2	35.4	9.4461	0.1000	0.02640	218.8	0.0161	0.22	0.0571
	No.5 Boiler to Header (B top)	20mm installation area	Installed	12/09/2014	206.3	550	229.4	0.200	0.12870	229.4	57.4	0.020	0.02400	57.4	35.4	9.3791	0.1000	0.02640	212.8	0.0313	0.39	0.0490
	No.5 Boser to Header (B top)	40mm installation area	installed	1208/2014	144.2	550	291.9	0.200	0.11178	291.9	51.5	0.040	0.02400	51.5	35.4	8.9593	0.1000	0.02540	150.6	0.0444	0.63	0.0260

According to all data in Table AP4-2, magnitude relation of $f_{PJI-dec,y}$ (Decreasing rate from initial thermal insulation efficiency of the project thermal insulation material) to $(\lambda_{PJI,y} - \lambda_{PJI,0}) / \lambda_{PJI,0}$ (Increasing rate of thermal conductivity for used project thermal insulation material from initial status) is shown as follows;

 $f_{\textit{PJI-dec},y} = 1 - 1/f_{\textit{PJI-eff}} + qR_{\textit{PJ},y} \times (1 - f_{\textit{PJI-eff}})/qR_{\textit{PJ},0}/f_{\textit{PJI-eff}} < (\lambda_{\textit{PJI},y} - \lambda_{\textit{PJI},0})/\lambda_{\textit{PJI},0}$

Therefore, $f_{PJI-dec,y}$ can be identified as the following equation in conservative manner, based on measurement data thermal conductivity for project thermal insulation material.

 $f_{PJI-dec,y} = (\lambda_{PJI,y} - \lambda_{PJI,0}) / \lambda_{PJI,0}$

Furthermore, $\lambda_{PJI,y}$ and $\lambda_{PJI,0}$ are identified by the weighted average value for temperature range between 50°C and 300°C with consideration for operating temperature range, according to interfacial temp. and surface temp. with installation of project thermal insulation material in Table AP4-2.