JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM.

JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Indonesia
Name of the methodology proponents	Mitsubishi UFJ Morgan Stanley Securities Co.,
submitting this form	Ltd.
Sectoral scope(s) to which the Proposed	1
Methodology applies	
Title of the proposed methodology, and	Title: Power Generation by Waste Heat Recovery
version number	in Glass Production Facility
	Version number: 01.1
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
Date of completion	2 March 2015

History of the proposed methodology

Version	Date	Contents revised
01.0	9 October 2014	Initial draft
01.1	13 January 2015	Second draft
01.2	2 March 2015	Third Draft

A. Title of the methodology

Power Generation by Waste Heat Recovery in Glass Production Facility

B. Terms and definitions

Terms	Definitions
Waste heat	Heat generated from glass production facility which would
	not have been recovered in the absence of the project
Waste Heat Recovery system	The power generation system consists of heat recovery unit
(WHR system)	and power generation unit.

C. Summary of the methodology

Items	Summary
GHG emission reduction	Waste heat recovery (WHR) system which generates electricity
measures	through waste heat recovered from glass production facility.
	Electricity generated from the WHR system replaces grid
	electricity resulting in GHG emission reductions of the
	connected grid system.
Calculation of reference	Reference emissions are calculated from net electricity
emissions	generation by the project which replaces grid electricity import
	to the glass factory where the project is implemented during a
	given time period.
Calculation of project	Project emissions are not considered as the WHR system does
emissions	not utilize any fossil fuel
Monitoring parameters	The quantity of the electricity supplied from the WHR system to
	the glass production facility is monitored.

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project utilizes waste heat of temperature ranging from 300 to 500 degrees	
	Celsius from the flat glass production facility by waste heat recovery (WHR)	
	system to generate electricity.	
Criterion 2	WHR system consists of thermal oil boiler and power generation unit.	
Criterion 3	WHR system utilizes only waste heat and does not utilize fossil fuels as a heat	
	source to generate power.	
Criterion 4	The glass factory where the project is implemented is connected to a grid system	
	and the theoretical maximum electricity output of the WHR system, which is	
	calculated by multiplying maximum electricity output of the WHR system by the	
	maximum hours per year $(24 * 365 = 8,760 \text{ hours})$, is not greater than the annual	
	amount of the electricity imported to the glass factory from the grid system:	
	(1) During the previous year before the validation, if the validation of the project	
	is conducted before the operation of the project, or	
	(2) During the previous year before the operation of the project, if the validation	
	of the project is conducted after the operation of the project.	
Criterion 5	The WHR system is designed to be connected only to an internal power grid of	
	the glass factory.	
Criterion 6	In case working fluid containing greenhouse gas is utilized in the WHR system,	
	the structure of the WHR system prevents leakage of such gas from the system.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Grid electricity generation	CO2	
Project emissions		
Emission sources	GHG types	
N/A	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated on the basis of net electricity generation by the project that

replaces the import of grid electricity to the glass factory where the project is implemented.

The quantity of electricity consumed by the WHR system except for direct captive use of the electricity generated by itself is subtracted from the quantity of the electricity supplied from the WHR system to the glass production facility to calculate net electricity generation.

In order to ensure conservativeness, the quantity of electricity consumption by the WHR system except for the direct captive use of the electricity generated by itself, is calculated by using the theoretically maximum load for the capacity of equipments in the above-mentioned WHR system.

F.2. Calculation of reference emissions

```
RE = EG \times EF grid
```

Where,

Reference emissions during a given time period p (tCO2/p)

The quantity of net electricity generation by the WHR system (MWh/p)

which replaces grid electricity import during a given time period p

CO2 emission factor for an Indonesian regional grid system, from (tCO2/MWh) which electricity is displaced due to the project during a given time period p

Determination of EGp

$$EG$$
 $_{p}$ = EG $_{SUP}$ $_{,p}$ - EC $_{AUX}$ $_{,p}$

The quantity of the electricity supplied from the WHR system to (MWh/p) the glass production facility during a given time period p

The quantity of electricity consumption by the WHR system except (MWh/p) for the direct captive use of the electricity generated by itself during a given time period p

Determination of EC AUX. D

 $EC_{\text{AUX, p}} = EC_{\text{CAP}} * 24 (hours / day) * D_{p}$

The total maximum rated capacity of equipments of the WHR (MW) system which consumes electricity except for the capacity of equipments which use the electricity generated by itself directly

The number of days during a given time period p (day/p)

G. Calculation of project emissions

Project emissions are not assumed in the methodology as the WHR system utilizes only waste heat and does not utilize fossil fuels as heat source to generate steam for power generation, which is prescribed in the eligibility criteria 3.

Therefore, the following formula is used to express the project emissions:

$$PE_p = 0$$

H. Calculation of emissions reductions

Emission reductions are calculated as the difference between the reference emissions and project emissions, as follows:

$$ER = PE = PE = PE$$

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EE	CO2 emission factor for an Indonesian	The most recent value available
EF grid	regional grid system, from which electricity is	at the time of validation is
	displaced due to the project during a given	applied and fixed for the
	time period	monitoring period thereafter.
		The data is sourced from
		"Emission Factors of
		Electricity Interconnection
		Systems", National Committee

		on National Council on Climate
		Change unless otherwise
		instructed by the Joint
		Committee.
EC CAP	The total maximum rated capacity of	Rated capacity of all installed
	equipments of the WHR system which	equipments of the WHR system
	consumes electricity except for the capacity of	which consumes electricity
	equipments which use the electricity generated	except for the capacity of
	by itself directly	equipments which use the
		electricity generated by itself
		directly.