Financing Programme for JCM Model Projects

September 2021

Outline of JCM Model Projects

Budget	Approx. USD83million in total with Demonstrate Decarbonization Techno Program
Executing Entity	International Consortium that consists of a Japanese entity and a JCM partner-country entity(ies)
Scope of Financing	Facilities, equipment, vehicles, etc. which reduce CO2 from fossil fuel combustion as well as construction cost fo
Eligible Projects	Start installation after the Contract of Finance is concluded and finish instal
Maximum percentage of Financial Support	Maximum of 50% and reduce the percentage according to the number of already selected project(s) using a similar techn % Number of already selected project(s) using a similar technology in each partner country : none (0) = up to 50%, up to 3 (1-3) = up to 40%, more than 3 (>3) = up to 30%. The percentage of
Cost-effectiveness	Cost-effectiveness of GHG emission reductions is expected to be JPY4,000/t % If the number of similar technological projects in a partner country is 5 or more, the cost-effectiveness is expected be JPY3,000 or lower. If it is 10 or more, JPY2,500 or lower.

for Submitting JCM model project proposal

ology for Realizing Co-Innovation

for installing those facilities, etc.

llation within 3 years.

nology in each partner country.

of financial support will be determined by GEC.

tCO2eq or better.

Basic policy for JCM Model Projects in FY2021

JCM Model Projects :

(CCS)

Supporting to facilitate diffusion of advanced decarbonizing technologies, etc and infrastructure as well as implementation of mitigation actions.

Eligible Projects

- (a) Projects that reduce energy-related CO2 emissions with leading decarbonizing technologies in developing countries, with which Japan has signed or has been consulting to sign a bilateral document on JCM, and that are expected to contribute to achieving Japan's GHG emission reduction target through the JCM;
- (b) Projects contribute to the sustainable development in partner countries. The installation and operation of the facilities/equipment shall comply with the relevant laws and regulations of the partner country and international practices and guidelines regarding the environmental protection
- (c) Reduction of GHG emissions achieved by the projects can be quantitatively calculated and verified; and
- (d) Facilities/equipment installed by the projects do not receive any other financial support by the Government of Japan.
- (e) If the technology to be adopted is a technology mentioned in Annex 3 "Conditions for Adoption by Technology" in this guideline, the technology shall meet its conditions.

*Call for Proposals for JCM Model Projects in FY2021Guidelines for Submitting Proposals (Page3)

Waste power generation Geothermal power generation

JCM Model Projects Schedule in FY2021

Glob

Global Environment Centre Foundation

4

What is the criteria of cost-effectiveness?

JPY4,000/tCO2equivalent

Amount of financial support[JPY]

Emission reductions of GHG [tCO2equivalent/y] × legal durable years[y]

X Legal durable years of the facilities is stipulated by the Japanese law, and are dependent on the industry classification.

JPY3,000/tCO2equivalent

In case the number of similar technological Projects in each country is 5 to 9.

JPY2,500/tCO2equivalent

In case the number of similar technological Projects in each country is 10 or more.

Solar power projects in Thailand

Indonesia

Guideline for Submitting JCM model project proposal

Categorization by applied technology type

Sector	Technology			Ethiopia		Maldives		Lao PDR	5		Palau	Cambod ia	Mexico	Saudi Arabia			Thailand		
		MN	BD	ET	KE	MV	VN	LA	ID	CR	PW	KH	MX	SA	CL	MM	TH	PH	
	Air Conditioning System						4		1								1		6
	Chiller		2				4		4	1		1				1	4		17
	Refrigerator								1							2	4		7
	Absorption Chiller Using Waste Heat	_							2								2		4
	Swirling Induction Type Air-conditioning System																1		1
	Air Conditioning System with Total Heat Excahnger															1			1
	Fridge and Freezer Showcase								1								1		2
	Boiler	2					2		3				1			2	1		11
	Double Bundle-type Heat Pump						1		1								1		3
	Water Heater Using Waste Heat						-		-	1						1	-		2
	Waste Heat Recovery System															2	1		3
	Heat Exchanger															<u> </u>	1		1
	Transformer						4	1									-		5
	LED Lighting						•	-	2								1		3
	LED Street Lighting with Dimming System								1			1					_		2
1. Energy Efficiency	Pump						1		±										1
57 7	Air Compressor						 1										1		2
	Aeration System						1		1								1		
	Regenerative Burners								<u> </u>										1
	Gas Fired Furnace						1												1
	Gas Fired Melting Furnace						-										1		1
	Air Conditioning Control System						1										1		2
							1					1					1		
	Freaquency Inverter for Pump Ventilation Contorl System						L									1			2
	Loom		1						2							L	1		4
			L						 1								1		
	Old Corrugated Cartons Process								T										1
	Battery Case Forming Device						1												1
	Electrolyzer in Chlorine Production													1			1		2
	Wire Stranding Machines						1												1
	Autoclave								1										1
	Multi-effect Distillation System												1						1
	Injection Modling Machine								1										1
	Solar Power Plant	4	1	1	2	1	4	3	3	1	5	4	3	1	4	1	15	6	59
	Solar Power Plant with Battery								1										1
	Small Hydropower Plant								8									3	11
	Wind Power Plant																	1	1
2. Renewable Energy	Geothermal Power Plant						-											1	1
	Biomass Power Plant								1			1			1	1	1	1	6
	Biogas Power Plant																	1	1
	Biomas boiler						2									4	1		3
	Biogas boiler															1		1	2
	Biomass Co-generation						1										1		2
3.Effective Use of	Power Generation by Waste Heat Recovery								1							1	1		3
Energy	Gas Co-generation								2								3		5
4. Waste Handling and	dWaste-to-Energy Plant															1			1
Disposal	Power Generation by Methane Recovery												1						1
	Digital Tachograph System						1												1
5. Transportation	CNG-Diesel Hybrid Bus								1										1
	Reefer Container						1												1
Total	Number of technology: 51	6	4	1	2	1	31	4	40	3	5	8	6	2	5	15	45	14	192

Orange more than 4 projects = Up to 30%

JCM for SDGs

Solar Power Module

Photovoltaic module: Conversion rate of 20% or higher, from optical to electric energy

Technology	Mongol a	i Banglad esh	Ethiopia	Kenya	Maldives	Viet Nam	Lao PDR	Indonesi a	Costa Rica	Palau	Cambod ia	Mexico	Saudi Arabia	Chile	Myanma r	Thailand	Philippin e	
	MN	BD	ET	KE	MV	VN	LA	ID	CR	PW	КН	MX	SA	CL	MM	ΤН	PH	Total
Solar Power Plant	4	1	1	2	1	4	3	3	1	5	4	3	1	4	1	15	6	59

Solar Power Plant with Battery

Photovoltaic(PV) module:

Conversion rate of 20% or higher, from optical to electric energy Battery

- (1) Charges only the power generated by PV modules introduced, and the power supplied from the battery is measured.
- (2) Necessity
- 1) Introduction to off-the-grid areas
- 2) Installation of batteries is required to connect grid by laws or regulations
- 3) For self-consumption in factories or local power supply business
 - (a) The battery should be charged and discharged every day

Guideline

(b) The battery capacity is 20% or larger than wattage of PV module installed,

and within maximum daily base chargeable amount

for Submitting

JCM ECO Lease Scheme

In the fiscal year 2020, "JCM Eco Lease Scheme" is newly introduced to JCM Model Project to cover leasing charges and interests. This scheme has an advantage in reducing the reporting burden of representative participants with shorter monitoring period and simple proposal document.

Representative Participant	Japanese leasing company
Amount of Financial Support	Up to JPY500 million for 3 years in principal
Percentage of Financial Support	Uniformly 10% of total leasing charges including lea
Period of MRV	Equal to leasing period
Leasing Period	At least 5 years
Costs Eligible for Financing	Leasing charges of the costs of facilities/equipment a
Eligible Type of Technologies	In principle, technologies with JCM methodology(ie that have been either approved or proposed
Financial Statement for Application	Only financial statements of Representative Particip

Guideline

for Submitting JCM model project proposal

Global Environment Centre Foundation

easing interests

and relevant lease interests

es)

pant need to be submitted.

1st Selection of Projects in FY2021

Partner Country	Entity	Project Title	Sector	Expected GHG Emission Reductions(tCO2/y)
Vietnam	JFE Engineering Corporation	Waste to Energy project in Bac Ninh Province	Waste handling and disposal	41,805
Vietnam		Introduction of 9MW Rooftop Solar Power System to Factories	Renewable Energy	3,618
Vietnam	ENDO Lighting Corporation	Introduction of High Efficiency LED Lighting with Dimming and Tunable Function to Office Building in Ho Chi Minh City	Energy Efficiency Improvement	196
Indonesia		Introduction of 3.3MW Rooftop Solar Power System in Woodworking Factories	Renewable Energy	2,396
Indonesia		Introduction of High-Efficiency Thermal Oil Heater System in Chemical Factory	Energy Efficiency Improvement	1,942
Mexico	Sharp Energy Solution Corporation	20MW Solar Power Project in Guanajuato	Renewable Energy	20,023
Thailand		Introduction of High Efficiency Once Through Boiler to Garment Factory	Energy Efficiency Improvement	2,665
Philippines	MITSUI & CO., LTD.	60MW Solar Power Project in Cordon, Isabela	Renewable Energy	44,860
Philippines	Mizuho-Toshiba Leasing Company Ltd.	Tanawon 20MW Flash Geothermal Power Plant Project	Renewable Energy	38,312

2nd Selection of Projects in FY2021

Partner Country	Entity	Project Title	Sector	GHG Emission Reductions(tCO2/y)
Vietnam	Marubeni Corporation	Introduction of 12MW Rooftop Solar Power System to Commercial and Industrial Customers	Renewable Energy	5,815
Vietnam	Osaka Gas Co., Ltd.	Introduction of 9.8MW Rooftop Solar Power System in Industrial Park	Renewable Energy	4,254
Vietnam	Asian Gateway Corporation	Introduction of 5.8MW Rooftop Solar Power System to Beverage Factory	Renewable Energy	2,531
Vietnam	The Kansai Electric Power Company, Incorporated	Introduction of 2.5MW Rooftop Solar Power System to Food Factory and Garment Factory	Renewable Energy	982
Vietnam	Tokyu Corporation	Introduction of High Efficiency Chiller and High Efficiency LED Lighting with Dimming Function to Shopping Center	Energy Efficiency Improvement	726
Lao PDR	Liberal Solution Co., Ltd.	19MW Solar Power Project in Xiangkhouang Province	Renewable Energy	7,861
Indonesia	WWS-JAPAN Co.	6MW Mini Hydro Power Plant Project in Besay River, Lampung Province	Renewable Energy	20,307
Indonesia	WWS-JAPAN Co.	2.3 MW Mini Hydro Power Plant Project in Melesom River, Lampung Province	Renewable Energy	6,787
Indonesia	Otsuka Pharmaceutical Factory, Inc.	Energy Saving by Introducing High Efficiency Autoclave to Infusion Manufacturing Factory 2	Energy Efficiency Improvement	8,796
Chile	Eurus Energy Holdings Corporation	9MW Solar Power Project in Casablanca, Valparaiso Region	Renewable Energy	8,527
Chile	Eurus Energy Holdings Corporation	9MW Solar Power Project in Yungay, Biobio Region	Renewable Energy	8,476
Chile	FARMLAND Co., Ltd.	3MW Solar Power Project Utilizing Farmland in Maule Region	Renewable Energy	2,489
Thailand	Kanematsu KGK Corp.	35MW Solar Power and Storage Battery Project in Suphanburi Province	Renewable Energy	13,197
Thailand	Sharp Energy Solution Corporation	Introduction of 23MW Rooftop Solar Power System to Tire Factories	Renewable Energy	8,928
Thailand	The Kansai Electric Power Company, Incorporated	Introduction of High Efficiency Boiler, High Efficiency Chiller, and Solar PV System to Textile Factory and Food Factory	Energy Efficiency Improvement/ Renewable Energy	1,885
Thailand	The Kansai Electric Power Company, Incorporated	Introduction of 2MW Rooftop Solar Power System to Non-ferrous Metal Factory	Renewable Energy	945
Thailand	Tokyo Century Corporation	Introduction of 1.85MW Solar Power System to Food Factories (JCM Eco Lease Scheme)	Renewable Energy	858
Thailand	Tokyo Century Corporation	Introduction of 0.13MW Solar Power System to Auto Parts Factory (JCM Eco Lease Scheme)	Renewable Energy	52
Philippines	Oriental Consultants Co., Ltd.	Introduction of Energy Saving Air Conditioning System to Quezon City Hall Compound	Energy Efficiency Improvement	780
				10

JCM Model Project (FY2021) in Thailand

Introduction of High Efficiency Once Through Boiler to Garment Factory PP (Japan): OSAKA GAS CO., LTD., PP (Thailand): OSAKA GAS (THAILAND) CO., LTD., Parfun Textile Co., Ltd.

Outline of GHG Mitigation Activity

This project saves energy consumption by replacing existing water tube boilers with highefficiency once-through boilers (boiler efficiency 98%) at a garment factory. It also reduces greenhouse gas (GHG) emissions by switching fuel from coal to natural gas.

Expected GHG Emission Reductions

2,665 tCO2/year

- = Reference CO_2 emissions (7,837 t CO_2 /year)
- Project CO₂ emissions (5,172tCO₂/year)
- <u>Reference CO₂ emissions</u>
 - = Fuel consumption of Reference boiler
 - \times CO₂ Emission Factor of Reference fuel type
 - + Electricity consumption of Reference boiler × Electricity grid Emission Factor
- <u>Project CO₂ emissions</u>

 Fuel consumption of Project boiler
 × CO₂ Emission Factor of Project fuel type
 + Electricity consumption of Project boiler
 × Electricity grid Emission Factor

JCM Model Project (FY2021)

Introduction of High-Efficiency Thermal Oil Heater System in Chemical Factory PP (Japan): FUMAKILLA LIMITED, PP (Indonesia): PT FUMAKILLA NOMOS

Outline of GHG Mitigation Activity

For the purpose of the contribution to the global environment, the operation of the existing coalfired thermal oil heater is stopped, and the amount of greenhouse gas (GHG) emissions can be reduced by installing the new high-efficiency natural gas-fired thermal oil heater.

By replacing the coal-fired system with the natural gas-fired system, concerns about the corrosion of pre air heater will be diminished, and the equipment is also expected to be used with high efficiency in the long run.

Expected GHG Emission Reductions

1,942 tCO₂ /year

- = [(Reference fuel consumption) - (Project fuel consumption)]
 - x Emission factor (EF)

Project Map of JCM Financing Programme : as of September 27, 2021

Total 203 projects / 17 countries (● Model Project:194, ■ ADB:5, ◆ REDD+:2, ▲ F-gas:2)

- Renewable Energy • Effective Use of Energy • Energy Efficiency Improvement • Transport

- Waste Handling and Disposal

Project by Year and Country

Project by Sector

Renewable Energy

Projects in Indonesia

Thai	lan	d				
			6		6	
	2 2		1	000	2	000
		2019 ble ene o Energ	ergy	2020	FY	2021
for Su JCM m		ng project pro	posal			

Infrastructure through JCM

COMMERCE

Accelerating **International Promotion of** Infrastructure through JCM

Along with the Overseas Development Strategy (Environment) compiled by Cabinet Office, Government of Japan in June 2018, the JCM model project aims to contribute to global GHG emission reductions, through the diffusion of leading low carbon or decarbonizing technologies.

POWER GENERATION AND SUPPLY

Power Generation with Methane Gas Recovery System 05

El Indonesia / Environmental Management and Technology Center

2 Mission / NTE DATA INSTITUTE OF MANAGEMENT CONSULTING, Inc.

Myanmar / Kinin Holdings Company, Limited, Energy Saving Brewing Systems
 Hailand / TSD Co., Ltd. Floating Solar Power System

Energy Saving in Industrial Wastewater Treatment System

Global Environment Centre Foundation

- Palau / Pacific Consultants Co., Ltd. Solar Power Plants for Commercial Facilities.
- 🚺 Indenesia / Toyota Tsusho Corporation
- Double-Bundle type Heat Pump
- Indonesia / Hokusan Co., Ltd. CNG-Diesel Equipment to Public Bus.
- 2 Thailand / Yokohama Port Corporation
- Energy Efficient Equipment to Bangkok Port

- 🚺 Viet Nam) Yuko Keiso Co., Ltd. Amorphous High Efficiency Transformers in power grid Viet Nam / Yokohama Water Co., Ltd. High Efficiency Water Pumps Myanmar / JFE Engineering Corporation Waste to Energy Plant in Yangon City
- Myanmar / Fujita Corporation Rice Husk Power Generation

RASTRUCTUR

Impact on Projects

- Government services stall, licenses and permits delay
- Design work delay / supply delay due to suspension of factory operation
- Installation work delay due to difficulty in securing labor for construction / engineers unable to enter the project site.
- Deterioration of cash flow of the project partner / reduction of investment budget, difficulty in raising funds
- Suspension of banking operations (delay on loan contracts, remittances)
- Reassessment of the project feasibility / change or reduction of project plan (especially in tourism and transportation)

Impact on Operation for JCM Model Projects

- Restricted face to face meeting:
 - Evaluation interviews
 - \cdot Meeting with participants
 - Consultation for prospect entities

Countermeasures against Covid-19 Impact

Support by MOEJ/GEC

Promotion via Webinar **Online Seminar** Symposium

Break stagnated Permission to promote Projects

ขอบคุณ ! ありがとうございました。

Global Environment Centre Foundation(GEC) Tokyo Office

3rd Floor, Hongo Ozeki Bidg 3-19-4, Hongo, Bunkyo-ku, **Tokyo 113-0033, JAPAN**

Phone: +81-3-6801-8773 / FAX: +81-3-6801-8861

E-mail :jcm-info@gec.jp URL : http://gec.jp/

