報告書添付資料 1

- PRELIMINARY -

THE BIOBRIQUETTE PROJECT BY HUAINAN MINING INDUSTRY, CHINA

CDM-PDD Version 03

03/2007

HOKUYO CO., LTD

SECTION A. General description of project activity

A.1. Title of the project activity:

"Heat generation from biomass-coal briquette in Huainan city, China"

A.2. Description of the project activity:

The project activity is to produce biomass-coal briquette fuel (BBF) from coal and biomass residues, to transfer BBF to the heat generation equipment, and to generate heat by combustion of BBF.

The features of the project activity can reduce CO_2 emission, SO_2 emission, ash-dust and smell of flue gas caused by coal combustion.

There are generally three kinds of the project scenario options in accordance to the mode of BBF utilization, however, the project scenario of this project activity is as follows:

Option P1:

"Heat is generated by combustion of BBF at the heat generation equipment, and the whole monitoring data can be recorded and managed by the project participants".

A.3. Project participants:

- 1) Project participants of the host country_
 - a. Huainan Dongchen Group Limited
 - b. Huainan Coal Mining(Group) CO., LTD.
- 2) Project participants of Japan
 - a. Hokuyo Co., Ltd.
 - b. Furukawa-Otuka Manufacturer CO., LTD.
 - c. A trading company (under planning)

A.4. Technical description of the project activity:

A.4.1 Location of the project activity:

A.4.1.1. Host Party(ies):

Huainan Dongchen Group Limited

A. 4. 1. 2. Resion/State/Province, etc.:

Anhui Province, China

A. 4. 1. 3. City/Town/ommunity etc,:

Huainan City

A.4.1.4 Detail of physical location, including information allowing the unique identification of the project activity(maximum one page)

Lao Longyan Area, Dongshan District, Huainan City, that is owned by Huainan Dongchen Group Limited.

A. 4. 2. Category (ies) of the project activity:

Energy Industry

A.4.3. Technology to be employed by the project activity:

The technology to be employed by the project activity is developed newly by HOKUYO CO., LTD. in Japan.

It contains crushing of raw coal and biomass residues into small grains, drying and mixing them, and forming pellets under high pressure, consuming comparatively high quantity of energy for conversion of coal and biomass into BBF.

The technology can change the combustibility of coal and reduce CO_2 emissions, SO_2 emission, ash-dust and foul smell of flue gas in coal combustion through the excellent combustibility of BBF.

BBF can be utilized at usual coal combustion equipment such as industrial boiler, power generation boiler, cooking devises and stove to generate heat.

Biomass residues are surplus residues of rice-straw, sugarcane, corn-stalk etc that were burned without control or decayed in soil.

Coal contains all types of coal that are selected by economics reasons and reliability of supply.

Fig.1 Concept of the Production of Biomass-coal briquette

The technology of the project activity can reduce CO_2 emissions by following reasons:

- i. Reduction of coal consumption by alternative of coal with biomass residues,
- Reduction of coal consumption by reduction of excess combustion air due to excellent combustibility of BBF,
- iii. Reduction of coal consumption by reduction of fouling of the heat transfer surfaces due to excellent combustibility of BBF,
- iv. On the other hand, CO_2 emissions are increased by the consumption of energy for operation of BBF plant.

A.4.4. Estimated amount of emission reduction over the chosen crediting period

1,072 kt-CO₂ <u>Year</u> Emission reduction (kt-CO₂/y)

1	28.2 (5.64x0.5)
2	45.1(5.64x0.8)
3	56.4(5.64x1.0)
•	
7	56.4 (5.64x1.0)
•	
14	56.4 (5.64x1.0)
•	
21	56.4 (5.64x1.0)
Total	1,072.5

A.4.5. Public finding of the project activity:

Not scheduled

SECTION B. Application of a baseline and monitoring methodology

B.1. Title and reference of the approved baseline and monitoring methodology applied to the project activity:

"New baseline and monitoring methodology for heat generation from biomass-coal briquette involving the production of the biomass-coal briquette"

B.2. Justification of the choice of the methodology and why it is applicable to the project activity:

- a. there is no applicable approved baseline and monitoring methodology, because the proposed project activity applies a new technology to the biomass-coal briquette plant for processing biomass residue and coal prior to combustion in the heat generation equipment, resulting in reduction of CO_2 emission.
- b. "The new baseline and monitoring methodology" is proposed by the technology owner: HOKUYO CO., LTD. in consideration of the project features of "heat generation from biomass-coal briquette".

B.3. Description of the sources and gases included in the project activity

(1) Project boundary

The project activity relates to coal and biomass residues as raw materials, BBF production plant, BBF transportation system and usually a wide variety of BBF utilization devices that BBF will be combusted as substitute energy of coal from the large scale heat generators such as industrial boilers to the small scale heat generators such as cooking devises and stoves.

As for monitoring of the project activity, the large scale heat generators can be carried out easily and exactly.

In consideration of technical analysis for project emissions of the project activity and the monitoring procedures proposed, the project boundary is decided as follows:

a. Inside project boundary

The sources and gases included in the project boundary can be directly measured, recorded and managed by the project participants.

b. Outside project boundary

The sources and gases excluded from boundary can not be directly measured, recorded and managed by the project participants.

Fig. 2: Project boundary

(User site: heat or hot water pipe line etc.)

Baseline: the	sources	and gases in	ncluded in the project boundary
Source	Gas	Included/	Justification/Explanation
		Excluded	
Grid electricity	CO_2	excluded	Excluded because the combustion gas
consumption at the heat			treatment facility is not required in case
generation equipment			of projected coal combustion. It is assumed
			that the consumption in the baseline and in
			the project activity is same (=0).
	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. This is
	N_2O	Excluded	conservative.
Fossil fuel consumption	CO_2	Excluded	Excluded because the gas treatment facility
for operation of the heat	CH_4	Excluded	is not required to the projected coal.
generation equipment	N_2O	Excluded	It is assumed that the consumption in the
			baseline and in the project activity is same
			(=0).
Coal combustion at heat	CO_2	Included	Main emission source
generation equipment	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. This is
	N_2O	Excluded	conservative.
Fossil fuel consumption	CO_2	Excluded	Supplemental fossil fuel is not required to
of supplemental fuel at			burn the projected coal at the heat
the heat generation			generation equipment.
equipment	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. This is
	N_2O	Excluded	conservative.
Baseline: the s	ources a	and gases ex	cluded from the project boundary
Uncontrolled burning or	CO_2	Excluded	It is assumed that CO $_{\rm 2}$ emissions from
decay of biomass residue			biomass residues do not lead to changes of
			carbon pools in LULUCF sector.
	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. This is
	N_2O	Excluded	conservative.
Fossil fuel consumption	CO_2	Included	
for coal mining reduced by	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. This is
the project activity	N_2O	Excluded	conservative.
Coal mine emissions at	CO_2	Excluded	Excluded for simplification. This is
coal mining reduced by the			conservative.

Table : Emission sources and gases included/excluded in the project boundary

project activity	CH ₄	Included	Project participants may decide to exclude
		or	this emission source, if the volume of
		excluded	CH_4 is very small. This is conservative.
	N ₂ O	Excluded	Excluded for simplification. This is
			conservative.
Fossil fuel consumption	CO ₂	Included	
for coal transportation	CH_4	Excluded	Excluded for simplification. This is
	N_2O	Excluded	conservative.
Fossil fuel consumption	CO_2	Included	
for coal ash	CH_4	Excluded	Excluded for simplification. It is assumed
transportation	N_2O	Excluded	that the amount of the baseline and of
			the project activity is same.
Project activity:	the sou	rces and gas	es included in the project boundary
Grid electricity	CO_2	Included	
consumption at BBF plant	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. These emission
	N_2O	Excluded	sources are assumed to be very small.
Fossil fuel consumption	CO_2	Excluded	Excluded for no use of fossil fuel at BBF
at BBF plant	$\mathrm{C}\mathrm{H}_{4}$	Excluded	plant.
	N_2O	Excluded	
BBF consumption for	CO_2	Included	
operation of BBF plant	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. These emission
	N_2O	Excluded	sources of BBF combustion are assumed to be
			very small.
Fossil fuel consumption	CO_2	Included	
for BBF transportation	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. These emission
	N_2O	Excluded	sources are assumed to be very small.
BBF combustion at heat	CO_2	Included	Main emission source
generation equipment	CH_4	Excluded	Excluded for simplification. These emission
	N_2O	Excluded	sources of BBF combustion are assumed to be
			very small.
Grid electricity	CO_2	Excluded	Excluded because the combustion gas
consumption at the heat			treatment facility is not required in the
generation equipment			baseline and the amount of consumption is
			assumed to be as same as that of the baseline.
	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. These emission
	N_2O	Excluded	sources are assumed to be as same as that of
			the baseline.

Fossil fuel consumption	CO_2	Excluded	Excluded because the combustion gas			
for operation of the heat			treatment facility is not required in case			
generation equipment			of BBF combustion.			
	CH_4	Excluded	Excluded for simplification. These emission			
	N_2O	Excluded	sources are assumed to be as same as that of			
			the baseline.			
Fossil fuel consumption	CO_2	Excluded	Supplemental fuel is not used.			
of supplemental fuel at	CH_4	Excluded				
the heat generation	N_2O	Excluded				
equipment						
Project activity: the sources and gases excluded from the project boundary						
Fossil fuel consumption	CO_2	Included				
for BBF ash	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. It is assumed			
transportation	N_2O	Excluded	that the amount of the baseline and of			
			the project activity is same.			
Fossil fuel consumption	CO_2	Included				
for biomass	$\mathrm{C}\mathrm{H}_{4}$	Excluded	Excluded for simplification. These emission			
transportation	N_2O	Excluded	sources are assumed to be very small.			
Biomass storage	CO_2	Excluded	It is assumed that CO $_{\rm 2}$ emissions from			
			biomass residues do not lead to changes of			
			carbon pools in LULUCF sector.			
	CH_4	Excluded	Excluded for simplification. These emission			
	N_2O	Excluded	sources are assumed to be very small.			

B.4. Description of how the baseline scenario is identified and description of the identified baseline scenario

B.4.1. Identification of the baseline scenario

Baseline scenario is identified in accordance to the SECTION D of the new baseline methodology, which is proposed by HOKUYO CO., LTD.

Step1 : Identification of biomass residues

New baseline methodology can be applied if the present situation regarding the use or disposal of biomass residues is identified with following Option 1-1 Option1-1: The biomass residue is dumped or left decay or burned in an

uncontrolled manner without utilizing it for energy purposes,

- Option1-2: The biomass residue is used for heat and/or electricity generation at the project site by the traditional method,
- Option1-3: The biomass residue is used for heat and/or electricity generation at the outside project site by the traditional method,
- Option1-4: The biomass residue is used for reduction of other GHG emissions,
- Option1-5: The biomass residue is used for non-energy purposes, such as production of fertilizer,
- Option1-6: The farm product of the agricultural area is switched to other farm products that biomass residues are not produced,
- Option1-7 : The agricultural area is used for other purposes that will increase of GHG emissions.

Biomass residues that are planned to use for the project activity are supplied from farms around Huainan City, China and composed from rice-straw and corn-stalk that were burned without control or dumped in soil in the past. There is no plan to use the present biomass residues for other purposes such as biofuels.

As for biomass residues of the project activity, it is certified that t the present situation corresponds to Option 1-1.

Step2: Identification of the fuel and the heat generation equipment

New baseline methodology can be applied if the present situation regarding the fuel and the heat generation equipment are identified with following Option 2-2-a or b, 2-3-a or b, and 2-4-a or b.

- Option 2-1: The existing heat generation equipment is scrapped and heat generation is abandoned,
- Option 2-2: Heat is generated by the existing heat generation equipment here:

Option a.: Fuel is coal,

Option b.: Fuel is coal-briquette without any biomass,

- Option c.: Fuel is biomass-coal-briquette or mixture of coal and biomass without any processing prior to combustion,
- Option 2-3: Heat is generated by modification of the existing heat generation equipment,

here:

Option a.: Fuel is coal,

Option b.: Fuel is coal-briquette without any biomass,

Option c.: Fuel is biomass-coal-briquette or mixture of coal and biomass without any processing prior to combustion,

Option d.: Fuel is mixture of biomass-coal-briquette and coal,

Option 2-4: Heat is generated by the newly constructed heat generation equipment, here:

Option a.: Fuel is coal,

Option b.: Fuel is coal-briquette without any biomass,

Option c.: Fuel is biomass-coal-briquette or mixture of coal and biomass without any processing prior to combustion,

Option d.: Fuel is mixture of biomass-coal-briquette and coal,

Option e.: Fuel is other fossil fuels except coal,

Option f.: Fuel is others except fossil fuels.

Regarding the type of the fuel and the heat generation equipment, the present situation is as follows:

- a. The coal that will be used as raw material in the project activity is the coal mined at the Huainan Coal Mine near the project site,
- b. The coal that will be used in the project activity is the coal used as energy to generate heat in the existing equipment and BBF is scheduled to be used in the heat generation equipment.

As for the type of fuels and the heat generation equipment, it is certified that the present situation corresponds to Option 2-2-a or b, 2-3-a or b, and 2-4-a or b.

Step3 : Removal of options which don't meet with policy, laws and regulations of the host country

New baseline methodology can not be applied if the project scenario options don't conform to the policy, law and regulation of the host country and the region. Regarding BBF, the government of China is recommending BBF as one of clean coal technology to modify the regional environmental problems.

As for conformity to the policy, law and regulation of the host country and the region, the project scenario option P1 of the project activity meet with them completely, and accordingly, certified options above-mentioned are not eliminated.

Step4 : Removal of options which don't have any barrier in economy, investment and technology in the host county

New baseline methodology can be applied if there is any barrier for the implementation of the project activity in economy, investment and technology in the host county.

According to the economic feasibility study of the project scenario P1, IRR of the project activity is 6.66%, which is not economically feasible.

The low IRR indicates that the investment to the project activity is not attractive.

The host country, China, has no own technology and industrial experience of BBF production except two experiences of the prototype test plants applied the technology of HOKUYO CO., LTD. Japan.

As for barriers to the project activity, there are hard barriers in economy, investment and technology as mentioned above, and accordingly, certified options above-mentioned are not eliminated.

B.4.2. Description of the identified baseline scenario

In accordance to new baseline methodology and identification regarding the baseline scenario above-mentioned, identified baseline scenario in the absence of the project activity is as follows:

Baseline scenario option B1:

"Heat is generated by combustion of coal used by the project activity at the same heat generation equipment as the project activity"

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of the additionality):

Step 1: Investment and sensitivity analysis

According to the economic feasibility study regarding project scenario P1, without income of CER credit, IRR of the project activity is 6.66%, which is not economically feasible.

The low IRR illustrates that the investment to the project activity is not attractive.

The results of economic analysis and sensible analysis are as follows:

Index of change (%)	-20	-10	0	+10	+20
IRR of standard conditions			6.66		
Ratio of the operation	1.54	4.22		8.94	11.1
Investment cost	20.2	8.29		5.26	4.03
Selling price of BBF	NA	NA		17.7	26.6
Price of raw materials	20.3	13.7		NA	NA

Without CER credit: IRR(%)

Step 2: Common practice analysis

The host country, China, has no own technology and commercial experience of BBF production except two experiences of the prototype BBF plants applied the technology of HOKUYO CO., LTD. Japan.

Step 3: Impact of CDM registration

According to the economic feasibility study regarding project scenario P1, with income of CER credit, IRR of the project activity is 26.7%, which is economically feasible.

The reliability of the project activity will be confirmed by the CDM registration, including the technical benefit to local and global environmental conditions. The results of economic analysis and sensible analysis are as follows:

With CER credit: IRR(%)

Index of change (%)	-20	-10	0	+10	+20
IRR of standard conditions			26.7		
Ratio of the operation	24.8	25.7		27.7	28.8
Investment cost	30.3	28.3		25.3	24.1
Selling price of BBF	19.3	22.6		31.8	38.2
Price of raw materials	33.8	30.0		23.8	21.4

B.6 Emission reduction

B.6.1. Explanation of methodological choices:

B. 6. 1. 1. Project emissions

Project emissions (TPEy) include CO $_2$ emissions from transportation of

biomass-coal briquette to the consuming site, however, exclude CO₂emissions from transportation of coal and biomass residues. Project emissions are calculated based on the quantity of coal and biomass, energy for processing of coal and biomass, fuel for transportation, and respective net calorific values and respective CO₂emission factor as follows:

(1) TPEy: Total project emissions

TPEy= Σ TPEp1,	У	(P)
where:		
TPEy	Total project emissions during the year y in t-CO $_2$ /y,	
TPEp1,y	Project emissions of the project scenario option P1 durin	g the year
	y in t-CO ₂ /y.	

(2) TPEp1, y: Project emissions of the project scenario option P1

TPEp1, y=∑X • WBBFp1, f, y • NCVcoal • COEFco2, coal+∑PE p1, f, y (Pn) where:

Ratio of coal and biomass-coal briquette (BBF) by weight, Х

- WBBFpl, f, y Quantity of BBF combusted at the heat generation equipment f to generate heat (Qp1, f, y) during the year y in kt/y,
- Qp1, f, y Quantity of heat generated by combustion of BBF at the heat generation equipment f of the project scenario option P1 during the year y in TJ/y,
 - Here: Qp1, f, y=WBBFp1, f, y • Eequipp1, f, bbf • NCV bbf, Qp1, f, y=Qb1, f, y,
- NCVcoal Average net calorific value of coal consumed in BBF plant during the year y in TJ/kt,
- COEFco2, coal CO₂ emission factor of coal consumed in BBF plant during the year y in $t-CO_2/TJ$,
- Average energy efficiency of the heat generation equipment Eequipp1, f, bbf f, if fired with BBF, on the basis of the quantity of combusted BBF excepting carbon loss in ash,
- PEp1, f, y CO_2 emission of energy consumed for operation of the heat generation equipment (f), excepting BBF combusted for heat generation, during the year y in $t-CO_2/y$.

(3) PEp1, f, y: CO₂ emission of energy consumed for operation

 Σ PEp1, f, y= Σ PEFFco2p1, f, i, y+ Σ PEPp1, f, i, y+PTbbf p1, f, y

(Pn-1)

where:

- PEFFco2pl, f, i, y CO_2 emission of fossil fuel *i* co-fired with BBF as supplemental fuel at the heat generation equipment *f* of the project scenario option P1 during the year *y* in t-CO₂/y,
- PEPp1, f, i, y CO_2 emission of energy *i* consumed for operation of BBF plant and the heat generation equipment *f* of the project scenario option P1, excepting BBF combusted for heat generation, during the year *y* in t- CO_2/y ,
- PTbbfpl,f,y CO_2 emission of fuel combusted for transportation of BBF to the heat generation equipment f of the project scenario option P1 during the year y in t- CO_2/y ,

(4) PEFFco2p1, f, i, y: CO₂ emission of fossil fuel i co-fired with BBF

 $\sum PEFFco2p1, f, i, y=\sum FFp1, f, i, y \cdot COEFco2, ff, i$ (Pn-2) where:

FFpl,f,i,y Quantity of fossil fuel i co-fired with BBF as supplemental fuel at the heat generation equipment f of the project scenario option P1 during the year y in TJ/y,

COEFco2, ff, i CO_2 emission factor of fossil fuel *i* in t-CO₂/TJ,

(5) PEPp1, f, y: CO_2 emission of energy consumed for operation

∑PEPp1, f, i, y=PFbbfp1, bbf, y • NCVbbf • EFco2, bbf+ PFbbfp1, elect, y • COEFco2, elect+ ∑PFequipp1, f, elect, y • COEFco2, elect (Pn-3)

where:

- PFbbfp1, bbf, y Quantity of BBF combusted for operation of BBF plant of the project scenario option P1, excepting BBF combusted for heat generation, during the year y in kt/y,
- PFbbfpl,elect, y Quantity of electricity consumed for operation of BBF plant of the project scenario option P1 during the year y in KWh/y,
- PFbbfpl, f, elect, y Quantity of electricity consumed for operation of the heat generation equipment f of the project scenario option P1 during the year y in KWh/y,
- NCVbbf Average net calorific value of BBF during the year y in TJ/kt,
- COEFco2, bbf CO_2 emission factor of BBF in t- CO_2/TJ ,
 - X COEFco2, coal=X 26.2 t-C/TJ 0.98 44/12 CO2/C

```
= X \cdot 94.145 \text{ t-CO}_2/\text{TJ}
```

COEFco2, elect CO_2 emission factor of electricity in t- CO_2 /KWh.

(6) PTbbfpl, f, y: CO_2 emission of fuel combusted for transportation of BBF

 Σ PTbbfp1, f, y= Σ PTbbfp1, f, t, y+ Σ PTbbfp1, f, r, y+ Σ PTbbfp1, f, is, y (Pn-4) where:

- PTbbfp1, f, y CO_2 emission of fuel combusted for transportation of BBF to the heat generation equipment f of the project scenario option P1 during the year y in t-CO₂/y,
- PTbbfp1, f, t, y CO_2 emission of fuel combusted for truck transportation of BBF to the heat generation equipment f during the year y in t-CO₂/y,
- PTbbfpl,f,r,y CO_2 emission of fuel combusted for railway transportation of BBF to the heat generation equipment f during the year y in t-CO₂/y,

PTbbfp1, f, is, y CO₂ emission of fuel combusted for inland-sailing,

transportation of BBF to the heat generation equipment f during the year y in t-CO₂/y.

a. CO_2 emission of fuel for track transportation of BBF

where:

- WBBFpl, f, t, y Quantity of BBF transported by trucks to the heat generation equipment f during the year y in t/y,
- PAVCbbfpl, f, t, Average trip-capacity of trucks for transportation of BBF to the heat generation equipment f in t-coal/trip,
- PAVDbbfpl,f,t Average trip-distance of truck transportation of BBF to the heat generation equipment f in km/trip,

EF, t, km, co2 CO_2 emission factor of truck transportation in t- CO_2 /km.

b. CO₂ emission of fuel for railway transportation of BBF

 Σ PTbbfp1, f, r, y= Σ WBBFp1, f, r, y • PAVDbbfp1, f, r •

EF, r, km, co2/PAVCbbfp1, f, r (Pn-4-2)

where:

WBBFpl, f, r, y Quantity of BBF transported by railway to the heat generation equipment f during the year y in t/y,

- PAVCbbfpl, f, r Average trip-capacity of railway for transportation of BBF to the heat generation equipment f in t-coal/trip,
- PAVDbbfp1, f, r Average trip-distance of railway transportation of BBF to the heat generation equipment f in km/trip,

EF,r,km,co2 $$\rm CO_2\ emission\ factor\ of\ fuel for\ railway\ transportation\ in\ t-CO_2/km.$

c. CO_2 emission of fuel for inland-sailing transportation of BBF

$$\begin{split} \Sigma \mbox{PTbbfpl, f, is, y} &= \Sigma \mbox{WBBFpl, f, is, y} \cdot \mbox{PAVDbbfpl, f, is} & (Pn-4-3) \\ & \mbox{where:} \\ & \mbox{WBBFpl, f, is, y} \mbox{ Quantity of BBF transported by inland-sailing to the heat} \\ & \mbox{generation equipment} \ f \ during \ the \ year \ y \ in \ t/y, \\ & \mbox{PAVCbbfpl, f, is} \ Average \ trip-capacity \ of \ inland-sailing \ transportation \ of \ BBF \\ & \mbox{to the heat generation equipment} \ f \ in \ t-coal/trip, \\ & \mbox{PAVDbbfpl, f, is} \ Average \ trip-distance \ of \ inland-sailing \ transportation \ of \ BBF \\ & \mbox{to the heat generation equipment} \ f \ in \ km/trip, \\ & \mbox{EF, is, km, co2} \ CO_2 \ emission \ factor \ of \ fuel \ for \ inland-sailing \\ & \mbox{total} \ delta \ del$$

transportation in t-CO $_2/{
m km}$.

B. 6. 1. 2. Baseline emissions

(1) TBEy: Total baseline emissions

TBE $y = \Sigma$ TBEb1, y (B) where: TBEy Total baseline emissions during the year y in t-CO₂/y, TBEb1, y Baseline emissions of the baseline scenario B1 in the absence of

the project scenario P1 in during the year y in $t-CO_2/y$.

(2) TBEb1, y: Baseline emissions of the baseline scenario B1

 Σ TBEb1, y= Σ Qb1, f, y · COEFco2, coal/Eequipb1, f, coal+ Σ BEb1, f, y (Bn) where:

Qb1, f, y Quantity of heat generated by combustion of coal at the heat generation equipment f in the absence of the project scenario P1 during the year y in TJ/y,

Here:

Qb1, f, y=Qp1, f, y

Qp1, f, y Quantity of heat generated by combustion of BBF at the heat generation equipment f of the project scenario option P1 during the year y in TJ/y,

here:

Qp1, f, y=WBBFp1, f, y • Eequipp1, f, bbf • NCVbbf

COEFco2, coal CO_2 emission factor of coal in t- CO_2/TJ ,

- Eequipb1, f, coal Average energy efficiency of the heat generation equipment f, if fired with coal, on the basis of combusted coal excepting carbon loss in ash, in the absence of the project scenario P1,
- BEb1, f, y CO_2 emission of energy consumed for operation of the heat generation equipment (f), excepting coal combusted for heat generation, in the absence of the project scenario P1 during the year y in t-CO₂/y.

(3) BEb1, f, y: CO_2 emission of energy consumed for operation

 $\Sigma BEb1, f, y = \Sigma BEFFco2b1, f, i, y + \Sigma BEPb1, f, y$ (Bn-1) where:

- BEFFco2b1, f, i, y CO_2 emission of fossil fuel *i* co-fired with coal as supplemental fuel at the heat generation equipment *f* in the absence of the project scenario P1 during the year *y* in t-CO₂/y,
- BEPb1, f, y CO_2 emission of energy *i* consumed for operation of the heat generation equipment *f* in the absence of the project scenario P1, excepting coal combusted for heat generation, during the year *y* in $t-CO_2/y$.

(4) BEFFco2b1, f, i, y: CO₂ emission of fossil fuel i co-fired with coal

 Σ BEFFco2b1, f, i, y= Σ FFb1, f, i, y • COEFco2, ff, i (Bn-2)

- FFb1, f, i, y Quantity of fossil fuel i co-fired with coal as supplemental fuel at the heat generation equipment f in the absence of the project scenario P1 in during the year y in TJ/y,
- COEFco2,ff,i CO $_2$ emission factor of fossil fuel i co-fired with coal in $\rm t-CO_2/TJ.$

(5) BEPb1, f, y: CO_2 emission of energy consumed for operation

 $\Sigma \text{ BEPb1, f, y} = \Sigma \text{ BFequipb1, f, i, y} \cdot \text{COEFco2, ff, i} + \\\Sigma \text{ BFequipb1, f, elect, y} \cdot \text{COEFco2, elect}$ (Bn-3)

where:

BFequipb1, f, i, y Quantity of fossil fuel i combusted for operation of the heat generation equipment f including the combustion gas treatment system in the absence of the project scenario P1 during the year y in TJ/y,

BFequipb1, f, elect, y Quantity of electricity consumed for operation of the heat

generation equipment f including the combustion gas treatment system in the absence of the project scenario P1 during the year y in KWh/y,

COEFco2, elect CO_2 emission factor of electricity in t- CO_2/kWh ,

here:

BFequipb1, f, elect, y=PFequipp1, f, elect, y if the combustion gas treatment system is not required to install in view of content of SO_2 emissions.

B. 6. 1. 3 Leakage emissions

(1) TLy: Total leakage emission

TLy=BLy-PLy

where:

- TLy Total leakage emissions of the project activity during the year y in t-CO₂/y.
- PLy Leakage emissions of the project scenario P1 during the year y in $t-CO_{2}/y$,
- BLy Leakage emissions of the baseline scenario B1 in the absence of the project scenario P1 during the year y in t-CO₂/y.

(2) PLy: Leakage emission of the project scenario P1

Leakage emissions (PLy)of the project scenario P1 may result from fuel combustion for transportation of coal, biomass residues, and BBF-ash by truck, railway and inland-sailing as follows:

PL, y=PLTcoal, y+PLTbiomass, y+PLTash, y (PL) where:

- PLTcoal, y Leakage emissions due to fuel combustion for transportation of coal from the coal mine to BBF plant of the project scenario P1 during the year y in t-CO₂/y,
- PLTbiomass, y Leakage emissions of fuel combustion for transportation of biomass from the agricultural area to BBF plant of the project scenario P1 during the year y in t- CO_2/y ,
- PLTash, y Leakage emissions due to fuel combustion for transportation of BBF's ash from the heat generation equipment to the disposal area of the project scenario P1 during the year y in t-CO₂/y.

a. PLTcoalpl,t,y: Leakage emissions due to coal transportation

PLTcoalp1, t, $y=\Sigma X \cdot WBBFp1$, $y \cdot PAVDcoalpn$, t $\cdot EF$, t, km, co2

/PAVCcoalpn, t (PL-1)

where:

- WBBFp1, y Quantity of BBF combusted at the heat generation equipment f to generate heat during the year y in kt/y,
- PAVCcoalpl,t Average trip-capacity of trucks for transportation of coal to BBF plant in t-coal/truck-trip,
- PAVDcoalpl,t Average trip-distance of trucks for transportation of coal to BBF plant in km/truck-trip,
- EF, t, km, co2 CO_2 emission factor of truck transportation in t-CO2/km-truck.

b. PLTbiomass, y: Leakage emissions due to biomass transportation

PLTbiomass, y=PLTbiomassp1, t, y+PLTbiomassp1, r, y+PLTbiomassp1, is, y

(PL-2)

b. 1. PLTbiomassp1, t, y: Leakage emissions due to biomass transportation by truck

PLTbiomassp1, t, y=
$$\Sigma$$
r • WBBFp1, y • PAVDbaiomassp1, t • EF, t, km, co2
/PAVCbaiomassp1, t (PL-2-1)

where:

PAVCbiomassp1,t Average trip-capacity of trucks for transportation of biomass to BBF plant in t-biomass/truck-trip,

PAVDbiomasspl,t Average trip-distance of trucks for transportation of biomass to BBF plant in km/truck-trip.

b.2. PLTbiomassp1,r,y: Leakage emissions due to biomass transportation by railway

PLTbiomassp1, r, y=
$$\Sigma$$
 r • WBBFp1, y • PAVDbaiomassp1, r • EF, r, km, co2
/PAVCbaiomassp1, r (PL-2-2)

where:

PAVCbiomasspn,r Average trip-capacity of railway for transportation of biomass to BBF plant in t-biomass/rail-trip,

PAVDbiomasspn,r Average trip-distance of railway for transportation of biomass to BBF plant in km/rail-trip.

b.3. PLTbiomasspl, is, y: Leakage emissions due to biomass transportation

by inland-sailing

```
PLTbiomassp1, is, y=\Sigma r \cdot WBBFp1, y \cdot PAVDbaiomassp1, is \cdot EF, is, km, co2
                                                                         (PL-2-3)
                      /PAVCbaiomass, is
 where:
 PAVCbiomassp1, is
                        Average trip-capacity of inland-sailing for
             transportation of biomass to BBF plant in t-biomass/sail-trip,
 PAVDbiomassp1, is
                       Average trip-distance of inland-sailing for
             transportation of biomass to BBF plant in km/sail-trip.
c. PLTashp1, t, y: Leakage emissions due to BBF's ash transportation
 PLTashp1, y=\Sigma r \cdot baioash \cdot WBBFp1, f, y \cdot PAVDashp1, f, t \cdot
               EF, t, km, co2/PAVCashp1, f, t
                                                                      (PL-3)
 where:
 PLTashp1, y
                  Leakage emissions due to BBF's ash transportation to the
             disposal area in project scenario P1 during the year y in t-CO_2/y,
                  Ratio of biomass and BBF by weight,
 r
 baioash
                  Ratio of BBF's ash produced from combustion of BBF by weight
             in t-ash/t-BBF,
 PAVCashp1, f, t Average trip-capacity of truck for transportation of BBF's ash
             to the disposal area in t-ash/truck-trip,
```

BAVCCashb1, f, t=PAVCashp1, f, t

PAVDashpl,f,t Average trip-distance of truck for transportation of BBF's ash to the disposal area in t-ash/truck-trip.

(3) BLy: Leakage emission of the baseline scenario B1

Leakage emissions (BLy) of the baseline scenario B1 may result from coal mine gas, fuel combustion for coal mining, transportation of coal from coal mine to the heat generation equipment by truck, railway and inland-sailing, and coal-ash transportation by truck as follows:

BLy=BLFmine, y+BLGcmm, y+BLTcoal, y+BLTash, y (BL) where:

- BLy Leakage emissions of the baseline scenario B1 in the absence of the project scenario P1 during the year y in t-CO₂/y,
- BLFmine, y Leakage emission due to energy consumption for mining of coal corresponding to the quantity of increased coal consumption in the absence of the project activity during the year y in t-CO₂/y,

- BLGcmm, y Leakage emission due to coal mine methane produced by mining of coal corresponding to the quantity of increased coal consumption in the absence of the project activity during the year y in t-CO₂/y,
- BLTcoal,y Leakage emissions due to fuel combustion for coal transportation from the coal mine to the heat generation equipment in the absence of the project activity during the year y in t-CO₂/y,
- BLTash, y Leakage emissions due to coal ash transportation to the disposal area in the absence of the project activity during the year y in t-CO₂/y during the year y in t-CO₂/y.

a. BLFmine, y : Leakage emission due to energy for coal mining

BLFmine, y=Σr • WBBFp1, f, y • BFmine, ff, i • COEFco2, ff, i • NCVbiomass /NCVcoal+Σr • WBBFp1, f, y • BFmine, elect • COEFco2, elect • NCVbriquette/NCVcoal (BL-1)

where:

r

Ratio of biomass and biomass-coal briquette (BBF) by weight

- WBBFp1, f, y Quantity of BBF combusted at the heat generation equipment f to generate heat during the year y in kt/y,
- BFmine, ff, i Quantity of fossil fuel for mining of coal corresponding to the quantity of increased coal consumption in the absence of the project activity in TJ-i/t-coal,
- BFmine, elect Quantity of electricity for mining of coal corresponding to the quantity of increased coal consumption in the absence of the project activity in kWh/t-coal,
- COEFco2, ff, i CO_2 emission factor of fossil fuel *i* in t- CO_2/TJ ,
- COEFco2, elect CO_2 emission factor of electricity in t- CO_2/kWh ,
- NCVbiomass Average net calorific value of biomass consumed in BBF plant during the year y in TJ/kt,
- NCVcoal Average net calorific value of coal consumed in BBF plant during the year y in TJ/kt.

b. BLG, cmm, y: Leakage emission due to coal mine methane by coal mining

BLG, cmm, $y=\Sigma r \cdot WBBFp1$, f, y $\cdot CMMmine \cdot COEFco2$, ch4 $\cdot NCVbiomass/NCVcoa1$

(BL-2)

where:

BLG, cmm, y Leakage emission due to coal mine methane produced by mining of coal corresponding to the quantity of increased coal consumption

in the absence of the project activity during the year y in t-CO₂/y, CMMmine Quantity of coal mine methane by coal mining in t-CH₄/t-Coal, COEFco2, ch4 CO_2 emission factor of methane in t-CO₂/t-CH₄.

c. BLG, cmm, y: Leakage emissions due to fuel for coal transportation

 Σ BLTcoalb1, f, y= Σ BLTcoalb1, f, t, y+ Σ BLTcoalb1, f, r, y

 $+\Sigma$ BLTcoalb1, f, is, y (BL-3)

where:

- BLTcoalb1, f, y Leakage emissions due to fuel combustion for coal transportation from the coal mine to the heat generation equipment f in the absence of the project activity during the year y in t-CO₂/y,
- BLTcoalb1, f, t, y Leakage emissions due to coal transportation by truck between the coal mine and the heat generation equipment f in the absence of the project activity during the year y in t-CO₂/y,
- BLTcoalb1, f, r, y Leakage emissions due to coal transportation by railway between the coal mine and the heat generation equipment f in the absence of the project activity during the year y in t-CO₂/y,
- BLTcoalb1, f, is, y Leakage emissions due to coal transportation by inland-sailing between the coal mine and the heat generation equipment f in the absence of the project activity during the year y in t-CO₂/y.

c. 1. BLTcoalb1, f, t, y: Leakage emissions due to coal transportation by truck

 Σ BLTcoalb1, f, t, y= Σ WBBFpn, y • BAVDcoalb1, f, t • EF, t, km, co2 •

NCVbbf/BAVCcoalb1, f, t • NCVcoal (BL-3-1)

where:

BAVCcoalb1, f, t Average trip-capacity of truck transportation of coal to the heat generation equipment f in t-coal/truck-trip, here:

It is assumed that BAVCcoalb1, f, t is equal to PAVCcoalp1, f, t.

BAVDcoalb1, f, t Average trip-distance of truck transportation of coal to the heat generation equipment f in km/truck-trip, here:

It is assumed that BAVD coalb1, f, t is equal to PAVD bbfp1, f, t. EF, t, km, co2 CO_2 emission factor of truck transportation in t- CO_2 /km-truck.

c.2. BLTcoalb1, f, r, y: Leakage emissions due to coal transportation by railway

where:

BAVCcoalb1, f, r Average trip-capacity of railway transportation of coal to the heat generation equipment f in t-coal/rail-trip, here:

It is assumed that BAVCcoalb1, f,r is equal to PAVCcoalp1, f,r. BAVDcoalb1, f,r Average trip-diatance of railway transportation of coal to the heat generation equipment f in km/rail-trip,

here:

It is assumed that BAVCcoalb1, f, r is equal to PAVCcoalp1, f, r.

```
EF,r,km,co2 $\rm CO_2\,emission\,\,factor\,\,of\,\,railway\,\,transportation\,\,in $\rm t-CO_2/km\mathchar`ail.}
```

c.3 BLTcoalb1, f, is, y: Leakage emissions due to coal transportation by inland-sailing

 Σ BLTcoalb1, f, is, y= Σ WBBFp1, y • BAVDcoalb1, f, is • EF, t, km, co2 • NCVbbf/BAVCcoalb1, f, is • NCVcoal (BL-3-3)

where:

BAVCcoalb1, f, is Average trip-capacity of inland-sailing transportation
 of coal to the heat generation equipment f in t-coal/sail-trip,
 here:

It is assumed that BAVCcoalb1, f, is is equal to PAVCcoalp1, f, is. BAVDcoalb1, f, is Average trip-distance of inland-sailing transportation of coal to the heat generation equipment f in km/sail-trip, here:

It is assumed that BAVCcoalb1, f, is is equal to PAVCcoalp1, f, is. EF, iskm, co2 CO_2 emission factor of inland-sailing transportation in t-CO $_2$ /km-sail.

d. BLTashb1, f, t, y: Leakage emissions due to coal ash transportation

 Σ BLTashb1, f, y= Σ r • coalash • WBBFp1, f, y • BAVDashb1, f, t • EF, t, km, co2 • NCVbiomass/(BAVCashb1, f, t • NCVcoal) (BL-4)

where:

- coalash Ratio of coal-ash produced from combusted coal by weight in t-ash/t-coal,
- ${\tt BAVCashb1, f, t} \quad {\tt Average \ trip-capacity \ of \ truck \ transportation \ of \ coal-ash}$

from the heat generation equipment f to the disposal area in t-ash/truck-trip,

here:

It is assumed that BAVCashb1, f, t is equal to PAVCashp1, f, t.

BAVDashbn, f, t Average trip-distance of truck transportation of coal-ash from the heat generation equipment f to the disposal area in km/truck-trip, here:

It is assumed that BAVDashb1, f, t is equal to PAVDashp1, f, t.

EF, t, km, co2 CO_2 emission factor of truck transportation in t- CO_2 /km-truck.

B. 6. 1. 4 Emission reduction

ERy= Σ TBEb1, y- Σ TPEp1, y+B1y-P1y (ER) where: Ery Emission reduction of the project activity during the year y in t-CO₂/y, Σ TBEb1, y Baseline emissions of the baseline scenario B1 in the absence of the project scenario P1 in during the year y in $t-CO_2/y$. Σ TPEp1, y Project emissions of the project scenario option P1 during the year y in $t-CO_2/y$, BL, y Leakage emissions of the baseline scenario B1 in the absence of the project scenario P1 during the year y in $t-CO_{2}/y$, PL, y

L, y Leakage emissions of the project scenario P1 during the year y in $t-CO_2/y$.

B.6.2. Data and parameters that are available at validation

(1) Data and parameters for calculation of project emissions:

Data and	Data	Description	Source of	Value	Justification of the choice of data or	Any comment
parameter	unit		data used	applied	description of measurement methods and	
					procedures actually applied	
P10	$tCO_2/$	CO_2 emission factor of the	China DNA	94.145	Published data by China DNA	96.2.0.96.44/12
COEFco2, coal	TJ	coal				
P13	-	Average heat efficiency of	Test data	0.70	BBF combustion test data in the	Not yet studied
Eequipp1, f, bbf		BBF combustion in the			combustion equipments that are tested	at present time.
		combustion equipments			by the organization authorized by China	0.7 is assumed
					DNA	for the study
P27	tCO_2/y	CO_2 emission factor of the	Published	-	Published data by China DNA	Not yet studied
COEFco2,ff,i		diesel oil	data			at present time
P40	$tCO_2/$	CO_2 emission factor of the	Published	1.0297	Published data by China DNA	
COEFco2,ff,elect	MWh	electricity	data			
P47	km	Average trip-distance of	Measured	-	measured by the location map	Not yet studied
PAVDbbfp1,f,t	/truck	BBF truck to the heat				at present time
	-trip	generation equipment f				
P48	t/	Average trip-capacity of	Operation	-	Past operation record of the coal	Not yet studied
PAVCbbfp1,f,t	truck	BBF truck to the heat generation equipment f	record		combustion equipment f	at present time
P49	tCO ₂ /	CO ₂ emission factor of the	Published	-	Published data by China DNA	Not yet studied
EF, t, km, co2	km	truck	data			at present time
	-truck					
P51	km	Average trip-distance of	Measured	-	measured by the location map	Not yet studied
PAVDbbfp1,f,r	/rail	BBF railway to the heat				at present time
	-trip	generation equipment f				
P52	t/rail	Average trip-capacity of	Operation	-	Past operation record of the coal	Not yet studied
PAVCbbfp1,f,r		BBF railway to the heat generation equipment f	record		combustion equipment f	at present time

P53	$tCO_2/$	CO_2 emission factor of the	Published	-	Published data by China DNA	Not yet studied
EF, r, km, co2	km-rai	railway	data			at present time
	1					
P55	km/is-	Average trip-distance of	Measured	-	measured by the location map	Not yet studied
PAVDbbfp1,f,is	trip	BBF inland-sailing to the				at present time
		heat generation equipment f				
P56	t/is	Average trip-capacity of	Operation	-	Past operation record of the coal	Not yet studied
PAVCbbfp1, f, is		BBF inland-sailing to the	record		combustion equipment f	at present time
		heat generation equipment f				
P57	tCO ₂ /	CO ₂ emission factor of the	Published	-	Published data by China DNA	Not yet studied
EF,is,km,co2	km	inland sailing	data			at present time
	-sail					

(2) Data and parameters for calculation of baseline emissions:

Data and	Data	Description	Source of	Value	Justification of the choice of data or	Any comment
parameter	unit		data used	applied	description of measurement methods and	
					procedures actually applied	
В9	-	Average energy efficiency	Test data	0.6	Coal combustion test data in the	Not yet studied
Eequipb1, f, coal		of coal combustion			combustion equipments that are tested	at present time.
		equipments in the absence			by the organization authorized by China	0.6 is assumed
		of the project activity			DNA	for the study

(3) Data and parameters for calculation of leakage of the project activity:

Data and	Data	Description	Source of	Value	Justification of the choice of data or	Any comment
parameter	unit		data used	applied	description of measurement methods	
					and procedures actually applied	
PL4	km/	Average trip-distance of	Measured	-	measured by the location map	Not yet studied
PAVDcoalp1,t	truck-	coal truck to BBF plant				at present time
	trip					
PL5	t/	Average trip-capacity of	Operation	_	Past operation record of the coal mine	Not yet studied

PAVCcoalp1,t	truck	coal truck to BBF plant	record			at present time
PL12	t-ash/	Ratio of ash produced by	Test data	0	Coal combustion test data in the	Not yet tested
baioash	t-bbf	BBF combustion			combustion equipments that are tested	at present time
					by the organization authorized by	
					China DNA	
PL13	km/	Average trip-distance of	Measured	-	Measured by the location map	Not yet studied
PAVDashp1,f,t	truck	BBF-ash truck from BBF			For simplification,	at present time
	-trip	plant to disposal area			BAVDashp1,f,t=PAVDashp1,f,t	
PL14	t/	Average trip-capacity of	Operation	-	Past operation record of the coal mine	Not yet studied
PAVCashp1,f,t	truck	BBF-ash truck from BBF	record		For simplification,	at present time
		plant to disposal area			BAVCashp1,f,t=PAVCashp1,f,t	

(4) Data and parameters for calculation of leakage of the baseline scenario:

Data and	Data	Description	Source of	Value	Justification of the choice of data or	Any comment
parameter	unit		data used	applied	description of measurement methods and	
					procedures actually applied	
BL8	TJ-i/	Quantity of fuel <i>i</i> for	Measured	-	Monitored by the coal mine	Not yet studied
BFmine,ff,i	t-coal	mining of increased coal in	by coal			at present time
		the absence of the project	mine			
		activity				
BL9	MWh/Tj	Quantity of electricity	Measured	-	Monitored by the coal mine	Not yet studied
BFmine, elect	-coal	for mining of increased	by coal			at present time
		coal in the absence of the	mine			
		project activity				
BL12	tCH ₄ /	CH_4 emission factor of	Measured	-	Monitored by the coal mine	Not yet studied
CMMmine	kt	underground mining	by coal			at present time
	-coal		mine			
BL13	tCO ₂ /	CO_2 emission factor of CH_4	DNA China	2.75	Published data by authority	
COEFco2, ch4	tCH_4					
BL18	km/	Average trip-distance of	Measured	-	BAVDcoalb1, f, t=PAVDbbfp1, f, t	Not yet studied

BAVDcoalb1,f,t	truck -trip	coal truck from coal mine to heat generation equipment f				at present time
BL19 BAVCcoalb1,f,t	t/ truck	Average trip-capacity of coal truck for coal transportation	Estimated	-	BAVCcoalb1, f, t=PAVCbbfp1, f, t	Not yet studied at present time
BL21 BAVDcoalb1,f,r	km /rail -trip	Average trip-distance of coal railway from coal mine to heat generation equipment f	Measured	-	BAVDcoalb1, f, r=PAVDbbfp1, f, r	Not yet studied at present time
BL22 BAVCcoalb1,f,r	t/rail	Average trip-capacity of coal train for coal transportation	Estimated	-	BAVCcoalb1, f, r=PAVCbbfp1, f, r	Not yet studied at present time
BL24 BAVDcoalb1,f,is	km /sail -trip	Average trip-distance of coal inland sailing from coal mine to heat generation equipment f	Measured	-	BAVDcoalb1, f, is=PAVDbbfp1, f, is	Not yet studied at present time
BL25t BAVCcoalb1,f,is	t/sail	Average trip-capacity of coal inland sailing for coal transportation	Estimated	-	BAVCcoalb1, f, is=PAVCbbfp1, f, is	Not yet studied at present time
BL30 coalash	tash/ t-coal	Ratio of coal-ash/coal	Test data	-	Coal combustion test data in the combustion equipments that are tested by the organization authorized by China DNA	Not yet tested at present time
BL31 BAVDashb1,f,t	km /truck -trip	Average trip-distance of ash truck from heat generation equipment f to disposal area	Measured	-	BAVDash, t=PAVDash, t	Not yet studied at present time
BL32 BAVCashb1,f,t	t/ truck	Average trip-capacity of ash truck for ash transportation		-	BAVCash, t= PAVCash, t	Not yet studied at present time

B.6.3. Ex-ante calculation of emission reduction

B. 6. 3. 1. Calculation of project emissions

```
\Sigma TPEp1, y=\SigmaX • WBBFp1, f, y • NCVcoal • COEFco2, coal+\SigmaPE p1, f, y (Pn)
```

It is assumed in this study that the heat generation equipment f is one unit to simplify the study, because any concrete condition of the heat generation equipment is not clarified at present time.

(1) Calculation of: $\Sigma X \cdot WBBFp1$, f, y $\cdot NCVcoal \cdot COEFco2$, coal

```
X=0.8
WBBFp1, f, y=100 kt/y
NCVcoal=23.0 TJ/kt
COEFco2, coal=94.145 t-CO<sub>2</sub>/TJ
X • WBBFp1, f, y • NCVcoal • COEFco2, coal=0.8 • 100 • 23.0 • 94.145
=173, 226 t-CO<sub>2</sub>/y
```

(2) Calculation of: ΣPE pl, f, y

```
\begin{split} &\Sigma \text{PEp1, f, y} = \Sigma \text{PEFFco2p1, f, i, y} + \Sigma \text{PEPp1, f, i, y} + \text{PTbbf p1, f, y} & (\text{Pn-1}) \\ &\Sigma \text{PEFFco2p1, f, i, y} = \Sigma \text{FFp1, f, i, y} \cdot \text{COEFco2, ff, i} & (\text{Pn-2}) \\ &\Sigma \text{PEPp1, f, i, y} = \text{PFbbfp1, bbf, y} \cdot \text{NCVbbf} \cdot \text{EFco2, bbf} + \text{PFbbfp1, elect, y} \cdot \\ &\qquad \text{COEFco2, elect} + \Sigma \text{PFequipp1, f, elect, y} \cdot \text{COEFco2, elect} & (\text{Pn-3}) \\ &\text{PTbbfp1, f, y} = \Sigma \text{PTbbfp1, f, t, y} + \Sigma \text{PTbbfp1, f, r, y} + \Sigma \text{PTbbfp1, f, is, y} & (\text{Pn-4}) \end{split}
```

a. Calculation of Pn-2: ΣPEFFco2p1, f, i, y

Fossil fuel is not used in the project activity due to high net calorific value of BBF. Therefore:

 Σ FFp1, f, i, y=0 and Σ PEFFco2p1, f, i, y=0

b. Calculation of Pn-3: Σ PEPp1, f, i, y

b.1. Calculation of: PFbbfp1, bbf, y • NCVbbf • EFco2, bbf

PFbbfp1, bbf, y=2.0 kt-bbf/y NCVbbf=21.0 TJ/kt-bbf EFco2, bbf=75.31 t-CO₂/TJ Therefore: PFbbfp1, bbf, y • NCVbbf • EFco2, bbf=2.0 • 21.0 • 75.31 =3,163 t-CO₂/y

b.2. Calculation of: PFbbfp1, elect, y • COEFco2, elect

PFbbfp1, elect, y=4, 320 MWh/y COEFco2, elect=1.0297 t- CO_2 /MWh PFbbfp1, elect, y • COEFco2, elect=4, 448 t- CO_2 /y b. 3. Calculation of: PFequipp1, f, elect, y · COEFco2, elect

The combustion gas treatment system for coal combustion in the heat generation equipment is not required to install in the absence of the project activity due to the low sulfur content in coal.

Therefore, in accordance to the assumption of methodology, it is assumed that PFequipp1, f, elect, y=0, and PFequipp1, f, elect, y • COEFco2, elect=0

b, 4. Calculation of the total of Pn-3: Σ PEPp1, f, i, y

 Σ PEPp1, f, i, y=7, 611 t-CO₂/y

c. Calculation of Pn-4: PTbbfp1, f, y

In this study, it is assumed that the distance and quantity of raw coal and BBF transportation between the coal mine, BBF plant and the heat generation equipment in the project activity is equal to these of fuel coal in the baseline scenario, because any concrete condition of the heat generation equipment and transportation root is not clarified at present time.

Therefore, it is assumed that there is no change in CO_2 emissions between the project activity and the baseline scenario, resulting in:

PTbbfp1,f,y=0.

d. Calculation of total of Pn-1: PEp1, f, y

PEp1, f, y=3, 163+4, 448 =7, 611 t-CO₂/y

(3) Calculation of total project emissions: Σ TPEp1, y

Σ TPEp1, y=173, 226+7, 611 t-CO₂/y =180, 837 t-CO₂/y

B. 6. 3. 2 Calculation of baseline emissions

 Σ TBEb1, y= Σ Qb1, f, y • COEFco2, coal/ \mathcal{E} equipb1, f, coal+ Σ BEb1, f, y (Bn)

In this study, it is assumed that the heat generation equipment f is one unit in accordance to the assumption of calculation of project emissions, because any concrete condition of the heat generation equipment is not clarified at present time.

(1) Calculation of: Σ Qb1, f, y · COEFco2, coal/Eequipb1, f, coal

Qb1, f, y=1, 535 TJ/年 COEFco2, coal=26.2tC/TJ・0.98・44/12=94.145 t-CO₂/TJ Eequipb1, f, coal=60.9 % Qb1, f, y・COEFco2, coal/Eequipb1, f, coal=1, 535・94.145/0.609 =237, 294 t-CO₂/y

(2) Calculation of: Σ BEb1, f, y

a. Calculation of Bn-2: Σ BEFFco2b1, f, i, y

Fossil fuel is not used in the baseline scenario due to high net calorific value of coal. Therefore: Σ FFb1, f, I, y=0, and therefore, Σ BEFFco2b1, f, I, y=0

b. Calculation of Bn-3: Σ BEPb1, f, y

The combustion gas treatment system for coal combustion in the heat generation equipment is not required to install in the absence of the project activity due to the low sulfur content in coal.

Therefore, in accordance to the assumption of methodology, it is assumed that Σ BFequipb1, f, i, y=0, BFequipb1, f, elect, y=0, Therefore: BEPb1, f, y=0

c. Calculation of the total of Bn-1: Σ BEb1, f, y

 Σ BEb1, f, y=0

(3) Calculation of total baseline emissions: Σ TBEb1, y

ΣTBEb1, y=237, 294 t-CO₂/年

B.6.3.3. Calculation of leakage

(1) Calculation of leakage of the project scenario: PL,y

PL, y=PLTcoal, y+PLTbiomass, y+PLTash, y (PL)

In this study, it is assumed that the distance and quantity of raw coal and BBF transportation between the coal mine, BBF plant and the heat generation equipment in the project activity is equal to these of fuel coal in the baseline scenario, because any concrete condition of the location the heat generation equipment and transportation roots is not clarified at present time. Conditions of the ash disposal area are not clarified also.

Therefore, it is assumed that there is no change in $\rm CO_2$ emissions between the project activity and the baseline scenario, resulting in: PL, y=0

(2) Calculation of leakage of the baseline scenario: BL, y

BLy=BLFmine, y+BLGcmm, y+BLTcoal, y+BLTash, y

(BL)

Due to the same reason to PLy, it is assumed that $\rm CO_2\,emissions$ of the baseline scenario are equal to these of the project activity, resulting in: BLy=0

B.6.4. Summary of the ex-ante estimation of emission reduction

(1) Baseline emissions

 Σ TBEb1, y=237, 294 t-CO₂/y

(2) Project emissions

 Σ TPEp1, y=180, 837 t-CO₂/y

(3) Leakage of the project scenario

P1, y=0

(4) Leakage of the baseline scenario

BL, y=0

(5) CO_2 emissions of the project activity

B.7 Application of the monitoring methodology and description of the monitoring plan:

B.7.1. Data and parameters monitored

B.7.1.1 Data and parameters monitored for calculation of project emissions

(1) TPEy: Total project emission

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
P1	tCO ₂ /y	Total project emissions	Calculated		Calculated by		
TPEy					Formula (P)		
P2	tCO ₂ /y	CO_2 emissions of project	Calculated		Calculated by		
TPEp1,y		scenario P1			Formula (Pn)		

TPEy=TPEp1,y

(P) (Pn)

TPEp1, $y = \Sigma X \cdot WBBFp1$, f, y · NCVcoal · COEFco2, coal+ ΣPE p1, f, y

(2) TPEp1, f, y: Project emission of project scenario P1

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
Р5	-	Ratio of coal/BBF	Calculated	0.8	To be calculated by		In this study, the design
Х					the consumption of		value is applied
					coal and biomass		
P6	kt/y	Quantity of BBF by weight	Operation	100	Supply record by BBF		In this study, the heat
WBBFpl,f,y		burned at the heat	record		plant and record of		generation equipment is
		generation equipment f			BBF consumption by		assumed to be one unit,

					the heat generation equipment	and the design value BBF production is appli	
P9		Net calorific value of	Published	23.0	measured by Huainan	In this study, the desi	ign
NCVcoal	TJ/kt	coal with 7% total	data by the		Coal Mine Group Co.,	value is applied	
		moisture	coal mine		LTD		
P11	tcoal/	Quantity of coal consumed	Operation	81,633	To measure by	To be used to confirm	n X
PFcoal,y	У	for the project activity	record		instrument equipped	(p5) and WBBFp1,y (P6)).
		by weight at 7% of the			to BBF plant	Data shall be adjusted	by
		total moisture				the actual total moistu	ıre
						m as follows: PFcoal,	7=
						PFcoal, m • (1.07-m)	
P12	tcoal/	Quantity of biomass	Operation	20, 408	To measure by	To be used to confirm	a X
PFbiomass,i,y	У	consumed for the project	record		instrument equipped	(p5) and WBBFp1,y (P6)).
		activity by weight at 7%			to BBF plant	Data shall be adjusted	by
		of the total moisture				the actual total moistu	ıre
						m as follows:	
						PFbiomass, 10=	
						PFbiomass, m • (1.10-m)	
P17	tCO ₂ /y	CO ₂ emission of energy	Calculated	0	Calculated by	Supplemental fuel for E	3BF
PEpl,f,y		consumed for operation in			Formula (Pn-1)	combustion is disuse	ed,
		the project activity				and the flue g	gas
						treatment system	is
						disused. Therefore,	
						PEp1, f, y=BEb1, f, y=0	

 Σ PEp1, f, y= Σ PEFFco2p1, f, i, y+ Σ PEPp1, f, i, y+PTbbf p1, f, y

(Pn-1)

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
P20	tCO ₂ /y	CO_2 emission of fossil	Calculated	0	Calculated by		Supplemental fuel for
PEFFco2p1,f,i,y		fuel consumed as			Formula (Pn-2)		coal combustion is
		supplemental fuel					disused, and the flue gas
							treatment system is
							unnecessary
P23	tCO ₂ /y	CO_2 emission of energy i	Calculated	0	Calculated by		Flue gas treatment system
PEPpl,f,i,y		consumed for operation			Formula (Pn-3)		is unnecessary due to low
							sulfur content in coal.
							Therefore:
							PEPp1, f, y=BEPb1, f, y=0
P41	tCO ₂ /	CO_2 emission of fuel	Calculated	-	Calculated by		=P42+P43+P44
PTbbfp1,f,y	tbbf	consumed for BBF			Formula (Pn-4)		
		transportation					

(3) PEp1, f, y: CO_2 emission of energy consumed for operation in the project scenario P1

PEFFco2p1, f, i, y=ΣFFp1, f, i, y · COEFco2, ff, i	(Pn-2)
Σ PEPp1, f, i, y=PFbbfp1, bbf, y • NCVbbf • EFco2, bbf+PFbbfp1, elect, y • COEFco2, elect	
+ Σ PFequipp1, f, elect, y • COEFco2, elect	(Pn-3)
Σ PTbbfp1, f, y= Σ PTbbfp1, f, t, y+ Σ PTbbfp1, f, r, y+ Σ PTbbfp1, f, is, y	(Pn-4)

(4) PEFFco2p1, f, i, y: CO₂ emission of fossil fuel consumed as supplemental fuel

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
P26	tCO ₂ /y	Quantity of fossil fuel	Operation	0	Instrument in BBF		Supplemental fuel for BBF

FFpl,f,i,y	as supplemental fuel for	record	plant	combustion is disused
	BBF combustion			

 $PEFFco2pl, f, i, y = \Sigma FFpl, f, i, y \cdot COEFco2, ff, i \qquad (Pn-2)$

(5) PEPp1, f, i, y: CO_2 emission of energy consumed for operation in the project scenario P1

ID number	Da	ta	description	Source of	Value of	Description of	QA/QC	Any comment
and	un	it		data	data	measurement methods	procedure	
data/parameters				to be	applied	and procedure to be	to be	
				used		applied	applied	
P28	t/y		Quantity of BBF consumed	Operation	2,041	Instrument in BBF		In this study, the design
PFbbfp1,bbf,y			for operation of BBF plant	record		plant		value, 2% of processing
								loss, is applied
P31	MWh/y		Quantity of electricity	Operation	4,320	Instrument in BBF		In this study, the design
PFbbfp1,elect,y			consumed for operation of	record		plant		value is applied.
			BBF plant					600KWh • 24h • 300d/1000
P34		MWh	Quantity of electricity	Operation	0	Instrument in the		Flue gas treatment system
PFequipp1,f,elect	, у	/у	consumed for operation of	record		heat generation		is unnecessary.
			the heat generation			equipment		Therefore, P34=B26=0
			equipment f.					
P37	TJ,	/	Average net calorific	Operation	21.0	Instrument in BBF		In this study, the design
NCVbbfp1	kt		value of BBF at 7.6% of the	record		plant		value is applied
			total moisture content					
P38	TJ,	/	Average net calorific	Operation	13.0	Instrument in BBF		In this study, the design
NCVbiomass	kt		value of biomass at 10% of	record		plant		value is applied
			the total moisture content					
P39	tCO	02/	CO_2 emission factor of BBF	Calculate	75.31	COEFco2, coal(p10)		In this study, the design
COEFco2, bbf	TJ			d		• 0.8		value is applied

PEPpn, y=PFbbfp1, bbf, y • NCV bbf • COEFco2, bbf+PFbbfp1, elect, y • COEFco2, elect+

PFequippn, elect, y • COEFco2, elect

(Pn-3)

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
P41	$tCO_2/$	CO_2 emission of BBF	Calculated	0	Calculated by		=P42+P43+P44 Not yet
PTbbfp1,f,y	tbbf	transportation			Formula (Pn-4)		studied at present time
P42	$tCO_2/$	CO_2 emission of BBF	Calculated	0	Calculated by		Not yet studied at
PTbbfp1,f,t,y	tbbf	transportation by truck			Formula (Pn-4-1)		present time
P43	$tCO_2/$	CO_2 emission of BBF	Calculated	0	Calculated by		Not yet studied at
PTbbfp1,f,r,y	tbbf	transportation by train			Formula (Pn-4-2)		present time
P44	$tCO_2/$	CO_2 emission of BBF	Calculated	0	Calculated by		Not yet studied at
PTbbfp1,f,is,y	tbbf	transportation by			Formula (Pn-4-3)		present time
		inland-sailing					
P46	t/y	Quantity of BBF	Operation	-	Monitored by the BBF		Not yet studied at
WBBFp1,f,t,y		transportation by truck	record		plant		present time
P50	t/y	Quantity of BBF	Operation	-	Monitored by the BBF		Not yet studied at
WBBFp1,f,r,y		transportation by train	record		plant		present time
P54	t/y	Quantity of BBF	Operation	-	Monitored by the BBF		Not yet studied at
WBBFp1,f,is,y		transportation by	record		plant		present time
		inland-sailing					

(6) PT bbfp1, f, y : CO_2 emission of the fuel for BBF transportation

$$\begin{split} & \Sigma \text{PTbbfp1, f, y} = \Sigma \text{PTbbfp1, f, t, y} + \Sigma \text{PTbbfp1, f, r, y} + \Sigma \text{PTbbfp1, f, is, y} & (\text{Pn-4}) \\ & \Sigma \text{PTbbfp1, f, t, y} = \Sigma \text{WBBFp1, f, t, y} \cdot \text{BAVDbbfp1, f, t} \cdot \text{EF, t, km, co2/BAVbbfp1, f, t} & (\text{Pn-4-1}) \\ & \Sigma \text{PTbbfp1, f, r, y} = \Sigma \text{WBBFp1, f, r, y} \cdot \text{BAVDbbfp1, f, r} \cdot \text{EF, r, km, co2/BAVCbbfp1, f, r} & (\text{Pn-4-2}) \\ & \Sigma \text{PTbbfp1, f, is, y} = \Sigma \text{WBBFp1, f, is, y} \cdot \text{BAVDbbfp1, f, is} \cdot \text{EF, is, km, co2/BAVCbbfp1, f, is} & (\text{Pn-4-3}) \end{split}$$

B.7.1.2 Data and parameters monitored for calculation of baseline emissions

(1)	TBEy :	Total	baseline	emissions
-----	--------	-------	----------	-----------

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
B1	tCO ₂ /y	Total baseline emission	Calculated	0	Calculated by		
TBEy		iotal baseline emission			Formula (B)		
B2	tCO ₂ /y	Baseline emissions of the	Calculated		Calculated by		The project activity is
TBEb1,y		baseline scenario B1			Formula (Bn)		baseline scenario B1 only

TBEy=TBEb1,y

(2) TBEb1, y : Baseline emissions of the baseline scenario B1

(B)

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
B5 Qb1, f, y	TJ/y	Quantity of heat generated at the heat generation equipment	=Qp1, y	=Qp1,y	Qp1, y=Qb1, y		
B12 BEb1, f, y	tCO ₂ /y	CO_2 emission of energy for operation of the heat generation equipment in the absence of the project activity	= PEp1, f, y	0	Calculated by Formula (Bn-1)		Supplemental fuel for coal combustion is disused, and the flue gas treatment system is disused. Therefore, PEp1, f, y=BEb1, f, y=0

TBEb1, y=Qb1, f, y • COEFco2, coal/Eequipb1, f, coal+BEb1, f, y

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
B15 BEFFco2b1,f,i,y	tCO ₂ /y	CO_2 emission of fossil fuel co-fired with coal		0	Calculated by Formula (Bn-2)		Supplemental fuel for coal combustion is disused
B18 BEPb1,f,y	tCO ₂ /y	CO ₂ emission of energy consumed for operation of the heat generation equipment including the gas treatment system		0	Calculated by Formula (Bn-3)		Flue gas treatment system is disused. Therefore, PEPp1, f, y=BEPb1, f, y=0

(3) BEb1, f, y: CO_2 emissions of energy consumed for operation the baseline scenario B1

BEb1, f, y=BEFFco2b1, f, i, y+BEPb1, f, y	(Bn-1)
BEFFco2b1, f, i, y=ΣFFb1, f, i, y • COEFco2, ff, i	(Bn-2)
BEPb1, f, y=ΣBFequipb1, f, i, y • COEFco2, ff, i+BFequipb1, f, elect, y • COEFco2, elect	(Bn-3)

B.7.1.3 Data and parameters monitored for calculation of leakage

(1) Project leakage

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
PL1 PLTcoalp1,y	tCO ₂ /t coal	CO_2 emission of fuel for transportation of raw coal	Calculated	-	Calculated by Formula (PL-1)		Not yet studied at present time
PL2 PLTbiomass,y	tCO ₂ /t coal	CO_2 emission of fuel for transportation of biomass	Calculated	-	Calculated by Formula (PL-2)		Not yet studied at present time
PL3 PLTash, y	tCO ₂ /t ash	CO_2 emission of fuel for transportation of BBF-ash	Calculated	-	Calculated by Formula (PL-3)		Not yet studied at present time
PL6 PAVDbiomassp1,t	km/truck -trip	Average trip-distance of biomass truck to BBF plant	Measured	-	measured by the location map		Not yet studied at present time
PL7 PAVCbiomassp1,t	t/truck	Average trip-capacity of biomass truck to BBF plant	Measured	-	PAVCbiomassp1, t= PAVCbbfp1, t(P48)		Not yet studied at present time
PL8 PAVDbiomasp1s,r	km/rail -trip	Average trip-distance of biomass railway to BBF plant	Measured	_	measured by the location map		Not yet studied at present time
PL9 PAVCbiomassp1,r	t/rail	Average trip-capacity of biomass train to BBF plant	Measured	_	PAVCbiomassp1, r= PAVCbbfp1,r(P52)		Not yet studied at present time
PL10 PAVDbiomassp1,is	km/sail -trip	Average trip-distance of biomass inland sailing to BBF plant	Measured	_	measured by the location map		Not yet studied at present time

PL11 PAVCbiomassp1,is	t/sail	Average trip-capacity of biomass inland sailing to BBF plant	-	PAVCbiomassp1, is= PAVCbbfp1, is(P56)		Not yet studied present time	at
		PLTbiomass, y+PLTash, y	9 /DAVC 1-	.1 .	(PL)		

PLIcoalpi, t, y= 2 X • WBBFpi, y • PAVDcoalpi, t • EF, t, Km, co2/PAVLcoalpi, t	(PL-I)
PLTbiomassp1,t,y=Σr•WBBFp1,y•PAVDbaiomassp1,t•EF,t,km,co2/PAVCbaiomassp1,t	(PL-2-1)
PLTbiomassp1,r,y=Σr•WBBFp1,y•PAVDbaiomassp1,r•EF,t,km,co2/PAVCbaiomassp1,r	(PL-2-2)
PLTbiomassp1is,y=Σr•WBBFpn,y•PAVDbaiomassp1,is•EF,t,km,co2/PAVCbaiomassp1,is	(PL-2-3)
PLTash, y= Σ r • baioash • WBBFp1, f, y • PAVDash, f, t • EF, t, km, co2/PAVCash, f, t	(PL-3)

(2) Baseline leakage

ID number	Data	description	Source of	Value of	Description of	QA/QC	Any comment
and	unit		data	data	measurement methods	procedure	
data/parameters			to be	applied	and procedure to be	to be	
			used		applied	applied	
BL7 r	t-baio /t-bbf	Ration of biomass/BBF by weight	Calculated	0.2	Calculated by Formula P12/(P11+P12)		In this study, the design value is applied

B.7.2. Description of the monitoring plan

(1) Monitoring person(s)/entity(s) for the inside/outside of the project boundary

a. Monitoring procedure inside the project boundary

Sources and gases included in the project boundary should be monitored under the responsibility of the operation manager of the BBF plant appointed by the project participants.

Those monitoring data will be measured, calculated, recorded by the operating manager or his nominated fellows in accordance with B. 7.1: Data and parameters monitored of this CDM-PDD (Form-Version 03) and reserved by the responsible person/entity nominated by the participants.

b. Monitoring procedure outside the project boundary

Sources and gases excluded from the project boundary are usually difficult to monitor directly by the operation manager or his nominated fellows of the BBF plant due to less technical knowledge and less chance to access to the monitoring devices.

Therefore, these sources and gases of the outside should be monitored under the responsibility of the operation manager of the corresponding facilities under the monitoring contracts between the project participant and the entities of the corresponding facilities.

Those monitoring data will be measured, calculated, recorded by the operating manager or his nominated fellows of the corresponding facilities in accordance with B.7.1: Data and parameters monitored of this CDM-PDD (Form-Version 03), and collected and reserved by the responsible person/entity nominated by the participants.

(2) Monitoring methods for the inside of the project boundary

Monitoring data to be collected at the inside of the project boundary are measured by the instrument installed on the related facilities and recorded manually in accordance with the required time schedule.

- a. BBF plant:
- Quantity of coal, biomass, BBF, BBF and electricity used in BBF plant, etc. b. Transportation

Quantity of BBF transported to the heat generation equipment, biomass to BBF plant, BBF-ash to the disposal area, etc.

c. Heat generation plant:

Quantity of BBF (received, burned, stocked), heat generated, electricity used, etc.

(3) Monitoring methods the outside of the project boundary

Monitoring data to be collected at the outside of the project boundary are measured and provided by the operation entity(s) of the related facility(s) in accordance with the measuring methods approved by DNA of the host country.

a. Data related to coal mining:

The coal supplier, Huainan Coal Mine Group Co., LTD

- b. Data related to transportation:
 - DNA of the host country
- B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person/entity
 - (1) Date of completion of the application of the baseline study and monitoring methodology

No application at present time

(2) Name of the responsible person/entity

Entity	: HOKUYO CO., LTD.
Person	: Mr.Tetsuo Akibayashi, Vice president
Tel/FAX	: 0081-11-711-7105/0081-11-711-2220
E-mail	: <u>akibayashi@hokuyo-gr.co,jp</u>

SECTION C. Duration of the project activity/crediting period

- C.1. Duration of the project activity
 - C.1.1 Starting date of the project activity

01/04/2009

C.1.2. Expected operational lifetime of the project activity

21 years (from the year 2009 to the year 2029)

C.2. Choice of the crediting period and related information

C.2.1. Renewable crediting period

21 years (from the year 2009 to the year 2029)

C.2.1.1. Starting date of the first crediting period

01/04/2009(planned)

C.2.1.2. Length of the first crediting period

7 years

SECTION D ENVIRONMENTAL IMPACT

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

The analysis of the environmental impacts is not implemented yet.

D.2. If environmental impacts are considered significant by the project participants or the host Party, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by host Party:

There is no information at present time, due to no analysis of the environmental impacts.

SECTION E. Stakeholders' comments

E.1. Brief description how comments by local stakeholders have been invited and compiled:

There is no information at present time, due to no invitation and compilation of the local stakeholders' comments.

E.2 Summary of comments received :

There is no information at present time, due to no invitation and compilation of the local stakeholders' comments.

E.3 Report on how due account was taken of any comments received:

There is no information at present time, due to no invitation and compilation of the local stakeholders' comments.