<u>PDD</u> <u>(1)イタニャイン市</u>

page 145

UNFCCO

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 02 - in effect as of: 1 July 2004)

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a <u>baseline methodology</u>
- C. Duration of the project activity / Crediting period
- D. Application of a <u>monitoring methodology</u> and plan
- E. Estimation of GHG emissions by sources
- F. Environmental impacts
- G. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Monitoring plan

ATTENTION PLEASE READ

This is a DRAFT version of the PDD. The ownership of the carbon credits has not been satisfactorily proven to the carbon advisors. There is as yet no engineering project. All numbers pertaining to the engineering part of the PDD are based on very rough estimates and CANNOT be submitted to the validators. No stakeholder meeting has yet been planned or held. No environmental licences have been submitted to the carbon advisor to date.

This DRAFT CANNOT yet be submitted for validation.

SECTION A. General description of <u>project activity</u>

A.1 Title of the <u>project activity</u>:

Project Name: Landfill Gas Recovery and Flaring Project for Site Remediation at the Itanhaem Waste

page 146

Dump ("Lixão") in São Paulo

Version: 2.3

Date: Monday, 14 February 2006

A.2. Description of the <u>project activity</u>:

The project partners are proposing a CDM project activity, which will result in reduced GHG emissions and contribute to local sustainable development in the Brazilian state of São Paulo. The project activity will involve the capture and flaring of methane, which is a major constituent of landfill gas (LFG). LFG capture and flaring is not mandated by Brazilian law nor is it a common practice to flare a large proportion of the produced gas. Customarily only a small fraction of LFG is flared to reduce risk of explosion. The Itanhaem landfill will therefore provide additional environmental benefits by flaring the majority of the gas produced. All revenues from the sale of CERs will go towards the remediation of the site.

The landfill in Itanhaem was opened in 1980 and will cease operations in early 2006. The site covers a total area of 100,000 m2 and at the beginning of 2005 contained a total of 800,000⁶⁰ tonnes of municipal solid waste. It is located in the municipality of Itanhaem in the state of São Paulo. To date the landfill has no leachate management system, no liner, no cover and no monitoring system. It is a largely unmanaged waste dump and as such presents a considerable environmental hazard that needs to be remediated.

The aim of this specific project activity is to install landfill gas collection and flaring equipment to reduce methane emissions to the atmosphere. At the present time electricity generation using captured landfill methane is not foreseen due to the unfavorable pricing regime currently prevailing in Brazil. However, all equipment used can be expanded to include electricity generation at a later stage to accommodate future changes in electricity tariffs. At present the ultimate rationale of the project is the combustion of methane to reduce anthropogenic greenhouse gas (GHG) emissions from the decomposition of organic waste in the landfill. These emissions reductions will be eligible for Certified Emissions Reductions (CERs) under the Kyoto Protocol's Clean Development Mechanism (CDM).

The project activity will have a series of positive social and environmental impacts, especially when compared to traditional Brazilian waste disposal sites. This is important in view of guidelines governing the CDM, which stipulate a contribution to sustainable development and local environmental protection. The Itanhaem project will flare the majority of generated methane and thus eliminate the negative impact of landfill gas emissions. In addition this project activity will generate enough income to pay for the remediation of the site according to high environmental standards.

Greenhouse gas emission reductions will result from the combustion of the recovered methane contained in the landfill gas. It is estimated that this project will generate **100,475CERs within the first 7-year crediting period (2006-2012)**.

There are several contributions to sustainable development.

Environmental benefits:

The local environment benefits from the highest European waste management standards that are applied to this site including:

⁶⁰ The total volume used in the LFG estimation is **799,989 tonnes** by the beginning of 2005.

page 147

• The project will contribute to the continued environmental improvements by providing the infrastructure to reduce greenhouse gas emissions.

Technology transfer:

The project will be one of the first in Brazil to recover and flare landfill gas from a closed landfill operation to generate CERs. The proceeds will go towards the remediation of the site. This model could therefore serve as a model of similar sites where there are no resources for site remediation.

Site Remediation:

The Itanhaem LFG flaring project will generate revenue that the local prefecture will use to remediate the site. The existing waste site has no landfill daily cover, no bottom liner, no drainage or treatment of leachate and no methane capture and flaring equipment. Hence it represents a clear environmental hazard and needs to be cleaned up as soon as possible. CDM revenues would allow the prefecture to achieve this.

A.3.	Project participants:

Please list project participants and Party(ies) involved and provide contact information in Annex 1. Information shall be in indicated using the following tabular format.

Name of Party involved ((host) indicates a host Party)	Private and/or public entity(ies) project participants (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)
Brazil (host)	Prefecture of Itanhaem; MaxAmbiental: Xenex do Brasil	No
	Ltda.	

(*) In accordance with the CDM modalities and procedures, at the time of making the CDM-PDD public at the stage of validation, a Party involved may or may not have provided its approval. At the time of requesting registration, the approval by the Party(ies) involved is required.

The Itanhaem landfill is owned by the Prefecture of Itanhaem and is operated by a private contractor. The gas-flaring project is being developed by MaxAmbiental, a Brazilian environmental finance company that specializes in greenhouse gas (GHG) mitigation activities, and Xenex do Brasil Ltda. Banco Sumitomo Mitsui Brasileiro SA is financing the baseline study and PDD as well as the project activity (For further details see Annex 1).

MaxAmbiental is an environmental finance company whose specialty lies in the preparation of carbon emissions reductions projects. Its staff has wide ranging experience in this area, including the successful registration of the first landfill gas CDM project, Nova Gerar.

A.4.	Technical description of the <u>project activity</u> :
	A.4.1. Location of the <u>project activity</u> :

A.4.1.1. <u>Host Party</u>(ies):

Brazil

page 148

UNFCCC

A.4.1.2.	Region/State/Province etc.:	

Itanhaem, São Paulo

Municipality of Itanhaem

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

The Municipality of Itanhaem lies on the northern coast of the state of São Paulo within the administrative region of Santos. It covers an area of 600 square kilometers. Itanhaem has a population of 85,438 inhabitants.

A.4.2. Category(ies) of project activity:

Sectoral scope: 13 - Waste handling and disposal

Project activity: Landfill gas capture and flaring project

A.4.3. Technology to be employed by the project activity:

The project will involve proven technology and hardware for the extraction and treatment of landfill gas.

Below is a brief summary of the equipment and technology proposed for this project:

The landfill gas collection system consists of the following components:

- Vertical wells (perforated concrete pipes) to ensure connectivity of all layers. A high-density perforated pipe is installed within the center of the well, which is backfilled with gravel.
- Landfill gas extraction wells will also be drilled into the landfill once areas reach their final elevation and final cover has been applied. The vertical wells consist of a pipe perforated in its lower part, placed in a drilled borehole in the waste, backfilled with gravel and sealed at the surface. Both well types will be equipped with wellheads that enable monitoring of gas flow and quality. Also valves are provided to allow adjustment of the available vacuum at each well.
- In order to maximize the extraction capacity horizontal drains will also be installed in the waste mass. Preliminarily, the installation of a series of horizontal drains with a horizontal separation distance of 60 meters installed every 5 meters in waste lift height is envisioned. The horizontal drains will consist of perforated pipes surrounded gravel or equivalent drainage material. The drains will be interconnected to the vertical well system.
- The flaring equipment consists of an enclosed flare, 2 compressors to require the vacuum in the collection network, an online gas analyzer, and valves and tubes.
- A condensate extraction and storage system designed at strategic low points throughout the gas system.

page 150

UNFCCC

A.4.4. Brief explanation of how the anthropogenic emissions of anthropogenic greenhouse gas (GHGs) by sources are to be reduced by the proposed CDM <u>project activity</u>, including why the emission reductions would not occur in the absence of the proposed <u>project</u> <u>activity</u>, taking into account national and/or sectoral policies and circumstances:

The project activity intends to collect and flare the methane generated by the anaerobic decomposition of the organic component of the municipal solid waste (MSW) landfilled at the Itanhaem landfill. The combustion of the methane produces carbon dioxide. Taking into account the respective Global Warming Potentials (GWP) of methane and CO_2 this combustion signifies a 21-fold reduction of GHG emissions.

The baseline scenario is defined as the most likely future scenario in the absence of the project activity. Based on the analysis of possible alternatives, the baseline scenario is the continued, uncontrolled release of landfill gas into the atmosphere.

The results of the financial analysis demonstrate that the project activity is not the most attractive course of action economically speaking and therefore this kind of project is not part of the baseline scenario. Hence the Itanhaem Project is considered to be additional.

	A.4.4.1.	Estimated	amount	of	emission	reductions	over	the	chosen
crediting period:									

YEAR	ESTIMATED ANNUAL EMISSION REDUCTIONS IN TCO ₂ E
2006	0
2007	21,192

page 151

INFOO

2008	19,175
2009	17,350
2010	15,699
2011	14,205
2012	12,853
Total emission reductions 7 years (tCO2e)	100,475
Renewable Crediting Period	$3 \times 7 \text{ years} = 21 \text{ years}$
Mean annual emission reductions (t CO2e)	14,354

The combustion of the methane generated by the Itanhaem landfill during the chosen crediting period reduces anthropogenic GHG emissions by:

100,475 tonnes of CO₂e between 2006-2012 (first 7 year crediting period)

A.4.5. Public funding of the project activity:	
--	--

There is no Official Development Assistance used in this project activity.

SECTION B. Application of a <u>baseline methodology</u>

B.1. Title and reference of the <u>approved baseline methodology</u> applied to the <u>project activity</u>:

ACM0001: Consolidated Methodology for Landfill Gas Project Activities

B.1.1. Justification of the choice of the methodology and why it is applicable to the project activity:

This consolidated methodology was developed specifically for landfill gas capture and flaring. The Itanhaem project is similar to the Nova Gerar project, which served as one of the examples included in the consolidated methodology ACM0001.

B.2. Description of how the methodology is applied in the context of the <u>project activity</u>:

The project activity will flare a greater proportion of the landfill gas generated by the decomposition of organic waste in the Itanhaem landfill, than would have occurred in the absence of the project activity. In the baseline scenario (i.e. the absence of the project) only 20% of all gas generated are customarily flared for safety reasons. The project activity leads to higher collection and flaring efficiency through the installation of modern LFG collection and flaring equipment. Therefore the project activity will reduce total GHG emissions below the GHG emissions of the baseline scenario.

Baseline emissions are calculated using a first order decay model proposed by the US Environmental Protection Agency as recommended in the 1996 IPCC Guidelines. Using this model the methane emissions that would have been released to the atmosphere in the absence of the project activity are calculated. A fraction of those emissions need to be discounted to take account of a minimum amount of flaring that does customarily occur for safety reasons. In the case of Brazil this is usually less than 20%. Hence the use of 20% for baseline flaring is considered to be conservative.

UNFCC

CDM – Executive Board

page 152

Key data for determining baseline scenario	Data Unit	Data Source		
Project activity and plausible alternatives to it	-	Project Participants (PP), Industry data		
National and local rules and regulations and policies	-	PP, Government		
Baseline IRR	%	Calculated		
Project IRR without Carbon	%	Calculated		
Threshold for investment (IRR/NPV/payback period)	%, etc.	PP, Industry		
Equipment costs	Brazilian Reais (R\$)	Suppliers, PP		
Operating costs	R\$	PP		
Revenue from operations	R\$	PP		
Market data (inflation, interest, tax, discount rate, etc.)	%	Relevant indices		
Landfill gas generation parameters	1/yr; m ³ /tonne	Us EPA, Brazil specific data (SCS Engineers)		
Methane collection parameters	%	IPCC, PP empirical data		
Global Warming Potentials	-	IPCC		
Proportion of methane flared in baseline	%	Industry Data		

For the determination of the baseline scenario a number of financial and market data had to be used. The various sources are listed in the table below.

B.3. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM <u>project activity</u>:

The proposed project activity will result in the reduction of greenhouse gases that would not occur if the project were not implemented. The numerous barriers and risks associated with the implementation of the proposed project activity that are identified clearly demonstrate that this project activity is not the baseline as usual scenario.

The tool used to demonstrate the additionality is the "Consolidated tool for demonstration of additionality", which is part of methodology **ACM0001**: Consolidated Methodology for Landfill Gas Project Activities. This tool for assessing additionality follows a step-based approach. Explanation on how additionality for the proposed project activity is proven following the consolidated tool for additionality follows.

This description is divided into two parts:

- D) The baseline approach and accompanying formulae described in ACM0001 are directly employed to the project activity under discussion.
- E) The "Tool for the demonstration and assessment of additionality" is used to establish the additionality of the Itanhaem LFG Capture and Flaring project activity.

page 153

Applicability

This methodology is applicable to landfill gas capture project activities, where the baseline scenario is the partial or total atmospheric release of the gas and the project activities include situations such as:

a) The captured gas is flared; or

b) The captured gas is used to produce energy (e.g. electricity/thermal energy), but no emission reductions are claimed for displacing or avoiding energy from other sources1; or

c) The captured gas is used to produce energy (e.g. electricity/thermal energy), and emission reductions are claimed for displacing or avoiding energy generation from other sources. In this case a baseline methodology for electricity and/or thermal energy displaced shall be provided or an approved one used, including the ACM0002 "Consolidated Methodology for Grid-Connected Power Generation from Renewable". If capacity of electricity generated is less than 15MW, and/or thermal energy displaced is less than 54 TJ (15GWh), small-scale methodologies can be used.

This baseline methodology shall be used in conjunction with the approved monitoring methodology ACM0001 ("Consolidated monitoring methodology for landfill gas project activities").

Comments:

As almost all of the LFG produced in the Itanhaem landfill will be <u>captured</u> and <u>flared</u>, the project activity meets situation "a)" described above; hence this methodology is applicable to the project activity.

Emission Reduction

The greenhouse gas emission reduction achieved by the project activity during a given year "y" (ER_y) is the difference between the amount of methane actually destroyed/combusted during the year $(MD_{project,y})$ and the amount of methane that would have been destroyed/combusted during the year in the absence of the project activity $(MD_{reg,y})$ times the approved Global Warming Potential value for methane (GWP_{CH4}) , plus the net quantity of electricity displaced during the year (EG_y) multiplied by the CO_2 emissions intensity of the electricity displaced ($CEF_{electricity,y}$) plus the quantity of thermal energy displaced during the year (ET_y) multiplied by the CO_2 emissions intensity of the thermal energy displaced ($CEF_{thermal,y}$). Electricity and thermal energy emission reductions apply to case (c) only.

$$ER_{y} = (MD_{project,y} - MD_{reg,y}) \times GWP_{CH4} + EG_{y} \times CEF_{electricity,y} + ET_{y} \times CEF_{thermal,y}$$
(1)

ERy is measured in tonnes of CO2 equivalents (tCO2e). $MD_{project,y}$ and $MD_{reg,y}$ are measured in tonnes of methane (tCH₄). The approved Global Warming Potential value for methane (GWP_{CH4}) for the first commitment period is 21 tCO₂e/tCH₄. EG_y is measured in megawatt hours (MWh). The CO₂ emissions intensity, CEF_{electricity,y}, is measured in tonnes of CO₂ equivalents per megawatt hour (t CO₂e/MWh) and ET_y is measured in TeraJoules (TJ) and CEF_{thermal,y} is measured in terms of tonnes of CO₂ equivalents per TJ (t CO₂e/TJ).

In the case where the $MD_{reg,y}$ is given/defined as a quantity that quantity will be used. In cases where regulatory or contractual requirements do not specify $MD_{reg,y}$ an "Adjustment Factor" (AF) shall be used and justified, taking into account the project context.

$$MD_{reg,y} = MD_{project,y} \times AF$$
 (2)

page 154

The following examples provide guidance on how to estimate AF:

- In cases where a specific system for collection and destruction of methane is mandated by regulatory or contractual requirements, the ratio of the destruction efficiency of that system to the destruction efficiency of the system used in the project activity shall be used.

- In cases where a specific percentage of the "generated" amount of methane to be collected and destroyed is specified in the contract or mandated by regulations, this percentage divided by an assumed efficiency for the collection and destruction system used in the project activity shall be used.

Comments:

In the case of this project activity there are neither regulatory nor contractual requirements for the combustion of the methane produced in the baseline scenario. The "Adjustment Factor" used for $MD_{reg, y}$ is 20%, a value that conservatively estimates the amount of gas that would be flared in the absence of the project activity to avoid explosion risks.

Also, this particular project does not intend to generate electricity or thermal energy from the captured LFG. Therefore, greenhouse gas emission reductions related to this source are not to be considered in the calculation of ER_y . Therefore Formula (1) can be re-written as:

$$ER_{y} = \left(MD_{project,y} - MD_{reg,y}\right) \times GWP_{CH 4}$$

The approved Global Warming Potential (GWP) of Methane for the first commitment period is 21 t CO_2 e/tCH₄.

Project proponents should provide an ex ante estimate of emissions reductions, by projecting the future GHG emissions of the landfill. In doing so, verifiable methods should be used. Ex ante emission estimates may have an influence on $MD_{reg,y}$. $MD_{project,y}$ will be determined ex post by metering the actual quantity of methane captured and destroyed once the project activity is operational.

The methane destroyed by the project activity $(MD_{project,y})$ during a year is determined by monitoring the quantity of methane actually flared and gas used to generate electricity and/or produce thermal energy, if applicable.

$$MD_{project,y} = MD_{flared,y} + MD_{electricity,y} + MD_{thermal,y}$$
 (3)

$$MD_{flared,v} = LFG_{flared,v} \times W_{ch4} \times D_{ch4} \times FE \quad (4)$$

Where $MD_{flared,y}$ is the quantity of methane destroyed by flaring, $LFG_{flared,y}$ is the quantity of landfill gas flared during the year measured in cubic meters (m^3) , wCH4,y is the average methane fraction of the landfill gas as measured during the year and expressed as a fraction (in $m^3 CH_4 / m^3 LFG$), FE is the flare efficiency (the fraction of the methane destroyed) and D_{CH4} is the methane density expressed in tonnes of methane per cubic meter of methane (tCH₄/m³CH₄).

$$MD_{electricity,y} = LFG_{electricity,y} \times w_{ch4} \times D_{ch4}$$
 (5)

Where $MD_{electricity,y}$ is the quantity of methane destroyed by generation of electricity and $LFG_{electricity,y}$ is the quantity of landfill gas fed into electricity generator.

page 155

$$MD_{thermal,v} = LFG_{thermal,v} \times W_{ch4} \times D_{ch4}$$
 (6)

Where $MD_{thermal,y}$ is the quantity of methane destroyed for the generation of thermal energy and $LFG_{thermal,y}$ is the quantity of landfill gas fed into the boiler.

Comments:

Again, since no electricity or thermal energy will be generated, the emission reductions will be equivalent to the amount of methane flared only, thus:

 $MD_{project,y} = MD_{flared,y}$

Consequently equations (5) and (6) will not be used for this specific project activity.

For the purpose of estimating baseline emissions and overall emission reductions of the project activity the USEPA's First Order Decay Model has been used. A detailed description and formulae used are provided in Section D.2.1.4.

According to ACM0001 at standard temperature and pressure (0 degree Celsius and 1,013 bar) the density of methane is $0.000656 \text{ tCH}_4/\text{m}^3\text{CH}_4$.

Project Boundary

The project boundary is the site of the project activity where the gas is captured and destroyed/used. Possible CO_2 emissions resulting from combustion of fuels other than the methane recovered should be accounted as project emissions. Such emissions may include fuel combustion due to pumping and collection of landfill gas or fuel combustion for transport of generated heat to the consumer locations. In addition, electricity required for the operation of the project activity, including transport of heat, should be accounted and monitored. Where the project activity involves electricity generation, only the net quantity of electricity fed into the grid should be used in equation (1) above to account for emission reductions due to displacement of electricity in other power plants. Where the project activity does not involve electricity generation, project participants should account for CO_2 emissions by multiplying the quantity of electricity required with the CO_2 emissions intensity of the electricity displaced ($CEF_{electricity,y}$).

Comments:

For more detailed information concerning the project boundary, please refer to Section B.4.

Baseline

The baseline is the atmospheric release of the gas and the baseline methodology considers that some of the methane generated by the landfill may be captured and destroyed to comply with regulations or contractual requirements, or to address safety and odor concerns.

Comments:

As mentioned above, flaring of landfill gas is not a common or required practice in Brazil. However, it is common to flare a small fraction (usually around 20%) of the produced gas to reduce the risk of explosion. Hence this fraction is deducted from the estimated total emissions of LFG from the landfill.

page 156

Leakage

No leakage effects need to be accounted under this methodology.

B)

Additionality

The additionality of the project activity shall be demonstrated and assessed using the latest version of the "Tool for the demonstration and assessment of additionality" agreed by the CDM Executive Board, which is available on the UNFCCC CDM web site.

Using the "Tool for demonstration and assessment of additionality":

Step 0: Preliminary screening based on the starting date of the project activity
Step 1: Identification of alternatives to the project activity consistent with the current laws and regulations
Step 2: Investment analysis
Step 4: Common practice analysis
Step 5: Impact of CDM registration

<u>Step 1:</u>

<u>Sub-step 1a. Define alternatives to the project activity:</u> There are 3 possible baseline scenarios for the ITANHAEM landfill:

1) The landfill operator adheres to the business as usual practice of not collecting and flaring landfill gas from its waste operations or flaring just a small fraction of the gas, for safety reasons. This is in fact the approach taken by most waste management operations in Brazil. In this case, no power is generated at the site and the Brazilian power system remains unaffected.

2) The landfill operator invests in LFG collection and flaring but not in power generation (the proposed project activity). The Brazilian power system remains unaffected.

3) The landfill operator invests in power generation from LFG. The operation marginally reduces the generation of power from other grid-connected sources and hence avoids carbon emissions.

Sub-step 1b. Enforcement of applicable laws and regulations:

Current Brazilian legislation does not require that landfills collect and dispose of landfill gases, and there are very few landfills in operation in Brazil that have been designed to collect, flare or utilize the full amount of gas generated. Most of these, like the NovaGerar landfills, were designed and built in the last two years specifically as CDM projects. When LFG collection and flaring does happen, this occurs mainly on a voluntary basis to diminish explosion risk. Usually only a low proportion of methane is collected due to the utilization of unsophisticated collection systems and the occasional flooding of pipes with leachate.

The implementation of environmental protection legislation in Brazil has a relatively long lead-time, and the Ministry of the Environment has no immediate plans to introduce legislation requiring the collection

and flaring of landfill gas from landfill sites. Historically in Brazil there also tends to be a gulf between stated regulations and practice with regards to the implementation of environmental protection legislation.

<u>Step 2:</u>

Sub-step 2a. Determine appropriate analysis method:

This project activity will not generate any financial or economic benefits other than CDM related income. Other than financial return from the carbon market, the only potential revenue to the project could come from the use of gas to produce electricity (Alternative 3 above). It is necessary to conduct a financial analysis to determine whether the project activity is an economically attractive course of action.

Historically, tariff levels have been relatively low due to a centralised pricing structure fixed by the government. The commercialisation and distribution of electricity is controlled by the government, through ANEEL (Electric Energy National Agency), by pre-establishing the contracts and the price range. While small tariff increases can be observed in the last few years, they are insignificant and not sufficient to indicate that this scenario is going to change now. The free electricity market is still very incipient in Brazil. These low tariffs make electricity generation from LFG economically unattractive at present.

Brazil's energy sector is already relatively clean and there is lack of governmental pricing policies to support and favour projects for the replacement of some non-renewable energy with new sources of clean electricity.

In parallel to the risks related to the sale of electricity, the exact amounts of landfill gas and the performance of the plants also concerns landfill operators. Given that the production of methane in the landfills can vary greatly and currently there isn't a single landfill site in Brazil generating electricity, this is seen as 'unproven' technology by local investors.

A sensitivity analysis was undertaken using assumptions that are highly conservative from the point of view of analysing environmental additionality, i.e. the best-case scenario IRR was calculated. It was assumed that the average daily waste placement rate at the Itanhaem Landfill would peak around 88 daily tonnes by the eighth year of operation. The volumes of landfill gas to be generated from the site were estimated using the US EPA First Order Decay Model. It was further assumed that the project has unlimited access to capital to invest in all the equipment necessary to use the increased amount of gas produced. The IRR (without carbon) is negative and still exposed to a series of risks (project, country, currency, etc.). These results show that even with the best possible conditions, which are obviously quite unrealistic, the project is still not an economically attractive course of action. Also, given that the Itanhaem waste site is an **unmanaged landfill that is deeper than 5m**, in accordance with the 1996 IPCC Guidelines a **Methane Correction Factor of 0.8** has been applied to the estimated methane volumes.

Sub-step 2b. Apply simple cost analysis N/a

<u>Step 4:</u>

According to the National GHG Emissions Inventory conducted by CETESB in 1994, 84% of Brazil's methane emissions came from the deposition of waste in uncontrolled rubbish dumps. This source is still

page 158

responsible for a large part of the methane emitted since not much has changed in the business as usual scenario in the country. Besides, the amount of waste produced in Brazil has been increasing and, as estimated in 2000, Brazilians were already producing an average of 0.52 kg of waste per person everyday.⁶¹

Nowadays 59% of the municipalities in Brazil still dispose of their waste in 'rubbish dumps' ("lixões") with no management, gas collection, water treatment, or regulation by environmental authorities whatsoever. Among the other 30% that use landfills, only 13% invest in sanitary landfills with sophisticated leachate collection and treatment systems.

Although, until the present moment there are no regulatory requirements for flaring landfill gas, a number of landfills are collecting a small amount of LFG for safety reasons. To maintain the calculations' conservatism and to assure the environmental integrity of the project, all emission reductions arising from the Itanhaem site will be discounted by 20% in the project model. This amount, as argued before, more than sufficiently covers the volume of gas that would be flared to follow the business-as usual scenario found in the landfills considered in this analysis.

Since there are no legislation requiring gas flaring in Brazilian landfills, besides the flaring of a small fraction for security (less than 20%), there is no reason to believe that an LFG system for the collection and flaring of all gas produced would be installed now, when the landfill is being built. The installation of even a rudimentary LFG collection system with passive venting or flaring would go beyond what is required by law and involve considerable expenses for the landfill operator without any offsetting revenues.

Given the regulatory situation in Brazil and the location and conditions of the landfill, the realization of alternative 2 is not required and would also not be an economically attractive course of action for the landfill owner and/or operator. It is therefore not considered a plausible alternative to the baseline scenario. Alternative 3 was also proven not to be financially feasible at Brazil's present electricity tariff levels. Consequently the only remaining plausible option is Alternative 1 (i.e. Business- as-usual: the construction of a landfill without any LFG treatment).

Step 5: Impact of CDM Registration

As can be seen form the attached financial analysis, successful CDM registration adds an additional revenue stream (in fact the only revenue stream) to the project activity. At a price of **US\$8 per CER** and a discount rate of 6%, the project has a **net present value of US\$384,435 and an IRR of <u>negative</u> 2.3%** over the first 7 years.

Baseline development in time and description of baseline scenario:

It has been shown that the BAU baseline holds at the time of preparing the project. The main determinants of this baseline are:

⁶¹ CETESB and IGBE Census

page 159

- Landfill regulations applicable to the site
- The economics of landfill gas utilization

It is possible that future regulatory requirements for landfills in Brazil will necessitate a higher level of LFG collection in the baseline scenario. If this occurs, the future baseline scenario will include compliance with such regulations.

It is also possible that the economics of LFG utilization for power generation may change at some time in the future. If such changes lead to a sufficient increase in the profitability of LFG utilization the proposed project could well be implemented without the help of carbon finance. If this occurs, the future baseline scenario will include an LFG to power project.

The baseline scenario for the proposed project can thus be described as follows:

No collection and treatment of LFG occurs at the Itanhaem landfill site and this allows the uncontrolled release of most of the LFG to the atmosphere until some future time when the collection and treatment of LFG will either be required by law or becomes an economically attractive course of action. The monitoring plan for the project will re-evaluate the baseline scenario, report any changes during the crediting period and determine the new baseline scenario.

This baseline scenario is the basis for the determination of the project's ERs as per the monitoring plans instructions.

The Itanhaem project baseline assumptions will be revisited every 7 years to ensure that the assumptions made in the baseline scenario still hold true, or they will be revised accordingly. In addition, the introduction of Brazilian legislation regarding the collection and flaring of landfill gas will be monitored **annually** as a part of the Monitoring Plan.

B.4. Description of how the definition of the <u>project boundary</u> related to the <u>baseline</u> <u>methodology</u> selected is applied to the <u>project activity</u>:

The following flow diagram describes the project boundary and includes those GHG emissions, which are "under the control of" the project participants, "significant" and "reasonably attributable".

In the light of these attributes, the following emissions have not been taken into account:

- Emissions from the transport of the waste to the landfill site, as these would occur even in the absence of the proposed project activity.
- Emissions from the vehicles used to compact and cover the waste, as these would also occur in the absence of the project activity.

page 160

UNFCCC

Figure B.4.1: Project Boundary

Emissions	Project Scenario	Baseline Scenario
Direct On-site	Emissions associated with the inefficiency of	Uncontrolled release of
	the LFG capture and flaring process.	practically all LFG generated by
	MaxAmbiental estimates that only about 75%	the landfill.
	of total LFG produced will be collected and	
	then combusted to CO_2 . Hence 25% of the total	
	gas production will be released as fugitive	
	emissions.	
Direct Off-site	Transportation of equipment to project site -	None identified
	excluded because deemed to be insignificant	
Indirect On-site	NA	NA
Indirect Off-site	Transportation of waste to landfill site -	Transportation of waste to
	excluded because would happen even in	landfill site – excluded because
	absence of project	would happen even in absence of
		project

Table B.4.2: System emissions

B.5. Details of <u>baseline</u> information, including the date of completion of the baseline study and the name of person (s)/entity (ies) determining the <u>baseline</u>:

The project is using ACM0001: Consolidated Methodology for Landfill Gas Project Activities

page 161

UNFCCO

The baseline study was concluded in November 2005.

The entity determining the baseline and participating in the project, as the technical consultants are **MaxAmbiental** and **Xenex do Brasil Ltda** Brazil, listed in Annex 1 of this document.

SECTION C. Duration of the <u>project activity</u> / <u>Crediting period</u>

C.1 **Duration of the project activity:**

C.1.1. <u>Starting date of the project activity:</u>

The project start date has been set for the second quarter of 2006.

C.1.2. Expected operational lifetime of the project activity:

The landfill will close in early 2006. The project activity is expected to last from 2006 to 2012 for the first crediting period. The actual project activity will have a renewable crediting period of 7 years. This period can be renewed twice.

C.2 Choice of the <u>crediting period</u> and related information:

The project activity will use a renewable crediting period as described below in the following section (C.2.1).

C.2.1.	Renewable crediting period

C.2.1.1.

The starting date is 1st January 2006

C.2.1.2. Length of the first <u>crediting period</u>:

Starting date of the first crediting period:

7 years duration per renewable period

C.2.2.	Fixed credit	ing period:	
	C.2.2.1.	Starting date:	

NA

C.2.2.2.	Length:	

NA

page 162

SECTION D. Application of a monitoring methodology and plan

D.1. Name and reference of <u>approved monitoring methodology</u> applied to the <u>project activity</u>:

ACM0001: "Consolidated monitoring methodology for landfill gas project activities"

D.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity</u>:

This monitoring methodology was specifically developed for landfill gas capture projects using baseline methodology ACM0001.

page 163

CDM – Executive Board

D.2. 1. Option 1: Monitoring of the emissions in the project scenario and the baseline scenario

D.2.1.1. Data to be collected in order to monitor emissions from the project activity, and how this data will be archived:										
ID number	Data	Source of	Data	Measured (m),	Recording	Proportion	How will the data be	Comment		
(Please use	variable	data	unit	calculated (c),	frequency	of data to	archived? (electronic/			
numbers to ease				estimated (e),		be	paper)			
cross-referencing						monitored				
to table D.3)										

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project (see discussion under D.4 below). The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

D.2.1.2. Description of formulae used to estimate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not applicable, see D.2.1.1.

D.2.1.3. Relevant data necessary for determining the <u>baseline</u> of anthropogenic emissions by sources of GHGs within the project boundary and how such data will be collected and archived:

ID number	Data	Source of	Data	Measured	Recording	Proportion	How will the data	Comment
(Please use	variable	data	unit	(m),	frequency	of data to	be archived?	
numbers to ease				calculated		be	(electronic/ paper)	
cross-referencing				(c),		monitored		
to table D.3)				estimated				
				(e),				

The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

D.2.1.4. Description of formulae used to estimate baseline emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not applicable. The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

UNFCCC

page 164

D. 2.2. Option 2: Direct monitoring of emission reductions from the project activity (values should be consistent with those in section E).

This is the Option chosen for the monitoring methodology of the Itanhaem landfill gas capture and flaring project. As stated in ACM0001: "The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform."

	D.2.2.1. Data to be collected in order to monitor emissions from the <u>project activity</u> , and how this data will be archived:									
ID number (Please use numbers to ease cross-referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e),	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment		
D2-1	Annual Waste landfilled	Truck balance	Tonnes	M	Arrival of truck	100%	Electronic (spreadsheet)	Measured on site		
D2-2	Flow of landfill gas to flares	Continuous Flow Meter	m^3	М	Continuous	100%	Electronic (spreadsheet)	Data will be aggregated monthly and yearly		
D2-3	Flare efficiency determined by 1) operating hours And 2) Methane content in exhaust gas	Continuous methane analyser	%	M &C	1) Continuously 2) Quarterly	N/a	Electronic (spreadsheet)	Data will be used to test and, if necessary, correct the flare's efficiency rating		
D2-4	Methane fraction in LFG	Continuous methane analyser	%	M &C	Continuous	100%	Electronic (spreadsheet)	Data will be aggregated monthly and yearly		
D2-5	Gas pressure	Pressure gauge	Pa	M	Continuous	100%	Electronic (spreadsheet)	Data will be used to calculate methane density		
D2-6	Gas temperature	Thermometer	Deg. Celsius	М	Continuous	100%	Electronic (spreadsheet)	Data will be used to calculate methane density		

UNFCCC

CDM – Executive Board

page 165

D2-7	Amount of methane flared	N/a	<i>Tonnes</i> of CH ₄	M & C	Daily	100%	Electronic (spreadsheet)	It can be measured or calculated with the following data: LFG flow to flare, methane fraction in LFG, LFG temperature and pressure, flare temperature, and flare working hours
D2-8	Amount of methane flaring required in baseline	N/a	<i>Tonnes</i> of CH ₄	С	Daily	100%	Electronic (spreadsheet)	20% of the amount of methane flared
D2-9	Regulatory requirements relating to landfill gas projects	Legislation	N/a	N/a	Annually	100%	Electronic (spreadsheet)	Required for any changes to the adjustment factor (ID 8)

D.2.2.2. Description of formulae used to calculate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.):

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project (see discussion under D.4 below). The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

The following formulae are used to calculate project emissions using the direct monitoring data measured and collected during the lifetime of the project:

$$MD_{project,y} = LFG_{flared,y} \times w_{ch4} \times D_{ch4} \times FE$$

Where:

$$LFG_{flared,y}$$
 = Flow of landfill gas (m³)

page 166

UNECCO

CDM – Executive Board

 W_{ch4} = Methane fraction in LFG (%)

 D_{ch4} = Temperature/(Pressure * R) (kg/m³)

FE = Flare efficiency (%)

D.2.3 .	Treatment of <u>leakage</u> in the monitoring plan	
----------------	--	--

D.2.3.1. If applicable, please describe the data and information that will be collected in order to monitor leakage effects of the project activity

ID number	Data	Source of	Data	Measured	Recording	Proportion	How will the	Comment
(Please use	variable	data	unit	(m),	frequency	of data to	data be	
numbers to ease				calculated (c)		be	archived?	
cross-referencing				or estimated		monitored	(electronic/	
to table D.3)				(e)			paper)	

Not applicable, there is no significant leakage in the project. See comment under D.2.3.2. below.

D.2.3.2. Description of formulae used to estimate <u>leakage</u> (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Only the construction of the LFG collection and utilization system will lead to some GHG emissions that would not have occurred in the absence of the project. These emissions are, however, insignificant. No increased in emissions are discernable other than those targeted and directly monitored by the project. Moreover, because the project employs direct monitoring of emission reductions, indirect emissions will not distort their calculation.

D.2.4. Description of formulae used to estimate emission reductions for the <u>project activity</u> (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

The following formulae are used to calculate emission reductions for the project activity using the direct monitoring data measured and collected during the lifetime of the project:

$$ER_{y} = \left(MD_{project,y} - MD_{reg,y}\right) \times GWP_{CH 4}$$

UNFCCC

page 167

Where:

 $GWP_{CH 4}$ = Global Warming Potential of methane (IPCC, 1996)

$$MD_{project,y} = LFG_{flared,y} \times w_{ch4} \times D_{ch4} \times FE$$

Where:

 $MD_{project,y}$ = Amount of methane actually **flared/destroyed** during year y

$$LFG_{flared,y}$$
 = Flow of landfill gas (m³)

 W_{ch4} = Methane fraction in LFG (%)

$$D_{ch4}$$
 = Temperature/(Pressure * R) (kg/m³)

$$FE =$$
 Flare efficiency (%)

 $MD_{reg,y}$ = Amount of methane flaring required in baseline (or **customarily** carried out for safety reasons)

Where:

$$MD_{reg,y} = MD_{project,y} \times AF$$

AF = Adjustment factor based on the project context, i.e. what fraction of methane is customarily flared for safety considerations.

Executive Board

page 168

UNECCO

D.3. Quality control (QC) and quality assurance (QA) procedures are being undertaken for data monitored										
Data	Uncertainty level of data	Explain QA/QC procedures planned for these data, or why such procedures are not necessary.								
(Indicate table and	(High/Medium/Low)									
ID number e.g. 31.;										
3.2.)										
D-1	Low	All the arriving waste at the landfill will be immediately weighed using a truck balance, with regular maintenance,								
		and all the values recorded for future calculations								
D2-2	Low	Flow meters will be subject to a regular maintenance and testing regime to ensure accuracy								
D2-3	Low	Regular maintenance will ensure optimal operation of flares. Flare efficiency will be calibrated annually or more								
		often, if significant deviation from previous efficiency rating is observed.								
D2-4	Low	Gas analyzer will be subject to a regular maintenance and testing regime to ensure accuracy								
D2-5	Low	Meters will be subject to a regular maintenance and testing regime to ensure accuracy.								
D2-6	Low	Meters will be subject to a regular maintenance and testing regime to ensure accuracy.								
D2-7	Low	This value is going to be calculated and recorded using the data that is directly collected and monitored at the site								
D2-8	Low	This data will be determined from current industry practice.								
D2-9	Low	This data will be determined from current legislation.								

D.4 Please describe the operational and management structure that the project operator will implement in order to monitor emission reductions and any <u>leakage</u> effects, generated by the <u>project activity</u>

As described before, the flaring station, where the emission reductions will actually happen, will be equipped with a measurement chain, which will allow direct daily measurement of the real amount of methane flared.

The management structures implemented in the Itanhaem project are as follows:

Daily Monitoring Records: On the larger more active sites site staff takes daily gas field and engine readings. These readings are then checked for any anomalies before being filed for future reference. The readings can be taken at weekly or other set periods depending on the activity and consistency of the gas field and engine operation. All engines have telemetry links back to a central computer, which continually monitors the performance of the engine detecting problems and highlighting them for attention.

Gas Field Monitoring Records: Taken on a weekly basis or at periods to be determined. The Site Technician walks the gas field taking readings at each gas well and recording these on a form. These readings are then checked for any anomalies before being filed for future reference. A gas analyser will be installed in order to enable continuous accurate measurement of the methane content on the landfill gas. These gas field inspections will also observe occurrence of any unintended releases of landfill gas. In case unintended releases are observed, appropriate corrective action will be taken immediately.

page 169

CDM – Executive Board

Routine Reminders for Site Technicians: All Site Technicians are issued with a reminder list to guide them through their daily, weekly and monthly routine. The Engineering Manager, Operations Manager and Training and Health & Safety Co-ordinator go through this routine during site visits to ensure all aspects of the role are being performed. In addition monitoring records, oil sample reports and meter readings that are due, are checked to ensure they have arrived. Again, the telemetry link records a lot of the data automatically.

Site Audits: The Engineering Manager, Operations Manager and Training and Health & Safety Co-ordinator make regular site visits. In addition to ensuring the site routines are being performed any additional training needs are assessed and an audit is taken of any outstanding task on site.

Outstanding Work Notice: Following the Site Audit a 'Plant Outstanding Works Notice' is issued to the Site Technician listing all the jobs that the management team consider necessary to be undertaken. This is checked on subsequent site audits to ensure these jobs have been carried out.

Calibration of measurement equipment: Calibration of measurement equipment will be done monthly in accordance with the requirements of the National Measurement Regulation Agency, INMETRO (Instituto Nacional de Metrologia).

Corrective Actions: Management structure measures include procedures to handle and correct non-conformities in the implementation of the Project or this Monitoring Plan. In case such non-conformities are observed:

- An analysis of the nonconformity and its causes will be carried out immediately by landfill staff
- Landfill management will make a decision, in consultation with MaxAmbiental when needed, on appropriate corrective actions to eliminate the non-conformity and its causes.
- Corrective actions are implemented and reported back to Landfill management.

It will be assured that the landfill gas management team will receive support and appropriate training on the implementation of this Monitoring Plan and of the project

D.5 Name of person/entity determining the <u>monitoring methodology</u>:

Paulo Braga, MaxAmbiental and Xenex do Brasil, Ltda (see Annex 1)

SECTION E. Estimation of GHG emissions by sources

	Emission	Greenhouse	Validity	Quantity	of	
	Source	Gas		Emissions		
				(2006-2012)		
	Landfill & LFG	Methane	Yes. Due to collection and flaring	58,253 tonne	s of	
	Flare		inefficiencies some gas will not be destroyed.	CO ₂ e		
			Hence there will still be emissions of LFG	_		
			even after the project activity has been			
naric			implemented.			
cen	LFG Flare	CO ₂	No. CH ₄ emissions from the decay of biomass	NA		
Š		-	are not counted as anthropogenic GHG			
ect			emissions			
roj	Equipment	Various	No. These are not considered to be	NA		
Ч	construction		"significant" in relation to overall emissions			
	On-site	Various	No. On-site transportation of MSW would	NA		
	transportation		occur even in the absence of the project			
	umsportation		activity.			
	Landfill	Methane	Yes. Methane emissions from the anaerobic	229.862 tonn	es of	
rio			decomposition of MSW are considered to be	CO ₂ e		
na			additional. In the baseline scenario only 20%	2-		
Sce			of LFG is captured and flared			
le			of Er O is captured and flared.			
lin						
ase						
B						

Figure E.1: Emission Sources

E.1. Estimate of GHG emissions by sources:

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project. To calculate emission reduction estimates baseline emissions only are estimated and then multiplied by the flaring inefficiencies and collection rates of the installed equipment.

E.2. Estimated <u>leakage</u>:

Only the construction of the LFG collection and utilization system will lead to some GHG emissions that would not have occurred in the absence of the project. These emissions are, however, insignificant. No increased in emissions are discernable other than those targeted and directly monitored by the project. Moreover, because the project employs direct monitoring of emission reductions, indirect emissions will not distort their calculation.

E.3. The sum of E.1 and E.2 representing the <u>project activity</u> emissions:

Project activity emissions are actually zero, as the project activity does not cause any GHG emissions by itself. Due to equipment inefficiencies it is estimated that there will still be a fraction of LFG released to the atmosphere. However, this is reflected in lower emissions reductions rather than in project activity emissions.

As the project aims to flare a large proportion of LFG produced, this percentage can be applied to the baseline emissions. In the case of the Itanhaem landfill and as explained above, a collection and flaring efficiency of 75% has been estimated. This plus further adjustments are then applied to the baseline emissions calculated in Section E.4 to arrive at total emission reductions.

E.4. Estimated anthropogenic emissions by sources of greenhouse gases of the <u>baseline</u>:

General Assumptions									
Parameter	Value	Source							
Global Warming Potential (GWP) of CH ₄	21	IPCC, 2001							
Amount of methane flared in baseline (AF)	20% for safety reasons	Industry common practice							
MCF – Methane Correction Factor for landfill	0.8 for unmanaged landfill	IPCC, 1996							
Density of methane	0.000656 tCH ₄ /m ³ CH ₄	Literature							
Methane generation rate (k)	0.1 year^{-1}	US EPA/SCS Engineers							
Potential methane generation capacity (L _o)	164 m ³ /tonne	US EPA/SCS Engineers							
Methane content of LFG	50%	IPCC, 1996							
Methane collection efficiency	75%	Supplier							
Insurance Adjustment Factor	20%	MaxAmbiental							

Waste Projections								
Year	Daily Waste Disposal Rate (tonnes/day)	Waste added in Year (tonnes/yr)	Cumulative Waste-in-Place (tonnes)					
1980	88	32,000	0					
1981	88	32,000	32,000					
1982	88	32,000	63,999					
1983	88	32,000	95,999					
1984	88	32,000	127,998					
1985	88	32,000	159,998					
1986	88	32,000	191,997					
1987	88	32,000	223,997					
1988	88	32,000	255,996					
1989	88	32,000	287,996					
1990	88	32,000	319,996					
1991	88	32,000	351,995					
1992	88	32,000	383,995					
1993	88	32,000	415,994					
1994	88	32,000	447,994					
1995	88	32,000	479,993					
1996	88	32,000	511,993					
1997	88	32,000	543,992					
1998	88	32,000	575,992					
1999	88	32,000	607,991					
2000	88	32,000	639,991					
2001	88	32,000	671,991					

2002	88	32,000	703,990
2003	88	32,000	735,990
2004	88	32,000	767,989
2005	100	36,500	799,989

USEPA First Order Decay Model

The estimation of baseline emissions is principally carried out to determine approximate gas volumes and by deduction emissions reductions. The following model is NOT part of the monitoring methodology per se, but rather suited for the **ex ante calculation** of potential emission reductions.

An assessment of the landfill gas generation of the Itanhaem Landfill was carried out using the **USEPA's Landfill Air Emissions Estimation Model**, which is consistent with the more complex methodology recommended by the Intergovernmental Panel on Climate Change (IPCC) for calculating methane emissions from landfills. The assumptions applied were those successfully used by the Brazilian NovaGerar project, whose two landfills operate under similar conditions as the Itanhaem landfill.

Model Inputs

The US EPA first order exponential decay model equation from the US EPA manual 'Turning a Liability into an Asset: A Landfill Gas to Energy Handbook for Landfill Owners and Operators' (December 1994) is as follows:

$$LFG = 2 \times L_o \times R \times \left(e^{-kc} - e^{-kt}\right)$$

Where:

LFG = total landfill gas generated in current year (m3)

L_o = theoretical potential amount of landfill gas generated (m3/tonne)

R = waste disposal rate (tonnes/year)

t = time since landfill opened (years)

c = time since landfill closed (years)

k = rate of landfill gas generation (1/year)

MCF – Methane Correction Factor of 0.8 is used because Itanhaem is an unmanaged waste facility (1996 IPCC guidelines).

The site-specific inputs used were:

Waste disposal rate (R):

The Itanhaem landfill received a total of $800,000^{62}$ tonnes of MSW between **1980 and 2005**. These data forms the foundation of the gas volume projection. This implies that the gas volume projection will vary accordingly. Therefore, even though gas volumes may fluctuate over a period of time because of varying disposal rates, the ultimate total volume of gas projected for the site will remain constant. The values used for R are shown in the waste projections table above.

Gas Generation Rate (k):

The gas generation rate for this site was determined based on specific ranges given for Brazilian landfills. The gas generation rate is influenced by the temperature, humidity and composition of the waste. A figure

⁶² The total volume used in the LFG estimation is **799,989 tonnes** by the beginning of 2005.

of **0.1** was used as recommended by SCS Engineers in a presentation on behalf of the US EPA in Sao Paulo, Brazil (Part 5: Evaluating Landfill Gas Potential, June 26 2001, Training Workshop for the US EPA Landfill Methane Outreach Program, Sao Paulo Brazil).

Theoretical Yield (Lo):

Another input into the computer model is theoretical maximum yield i.e. the total amount of landfill gas that one metric tonne of waste is expected to generate over its lifetime (cubic meters per tonne of MSW). Lo is a variable dependent on the type of waste deposited and its organic content. Again estimates recommended by SCS Engineers in a presentation on behalf of the US EPA in Sao Paulo, Brazil (Part 5: Evaluating Landfill Gas Potential, June 26 2001, Training Workshop for the US EPA Landfill Methane Outreach Program, Sao Paulo Brazil) were used, and the value chosen was **164 m3/tonne**.

Time since landfill opened (t): These values varied depending on which site was being investigated. In the case of the Itanhaem landfill the opening year was **1980**. Therefore the value used for t changed depending on which year landfill gas generation figures were being developed for.

Time since landfill closed (c): The landfill will be shut by early **2006**.

The USEPA model was then applied to the specific case of the CTRPE landfill and using the parameters detailed above gas volumes were estimated. The results are in the following table.

	Project Emissions for 1 st Crediting Period						
Year	Methane Production (tCH ₄ /yr)	Baseline CO2e Emissions (tCO ₂ e/yr)	CO ₂ e Emissions after project activity (tCO ₂ e/yr)	Net emissions reductions (tCO2e/yr)			
2006	2,586	43,452	43,452	0			
2007	2,340	39,317	12,286	21,192			
2008	2,118	35,575	11,117	19,175			
2009	1,916	32,190	10,059	17,350			
2010	1,734	29,127	9,102	15,699			
2011	1,569	26,355	8,236	14,205			
2012	1,419	23,847	7,452	12,853			
Total	13,682	229,862	101,705	100,475			

5. Difference between E.4 and E.3 representing the emission reductions of the <u>project</u> <u>activity</u>:

After to accounting for registration fees and a 20% insurance factor, total emission reductions amount to **100,475 tCO₂e over the first 7-year crediting period**. For a summary of estimated results please see the table in E.6 below.

E.6. Table providing values obtained when applying formulae above:

Year	Estimation of baseline emissions (tonnes of CO ₂ e)	Estimation of project activity emissions (tonnes of CO ₂ e)	Estimation of gross emission reductions (tonnes of CO ₂ e)	Estimation of net emission reductions (tonnes of CO ₂ e)
2006	43,452	43,452	0	0
2007	39,317	12,286	27,030	21,192
2008	35,575	11,117	24,458	19,175
2009	32,190	10,059	22,131	17,350

2010	29,127	9,102	20,025	15,699
2011	26,355	8,236	18,119	14,205
2012	23,847	7,452	16,395	12,853
Total (tonnes of CO ₂ e)	229,862	101,705	128,157	100,475

SECTION F. Environmental impacts

F.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

This section needs to be completed with section that the project sponsor has yet to provide.

F.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

The current Itanhaem waste site ("Lixão") exhibits minimal environmental impact control. The Itanhaem LFG flaring project will generate revenue that the local prefecture will use to remediate the site. The existing waste site has no landfill daily cover, no bottom liner, no drainage or treatment of leachate and no methane capture and flaring equipment. Hence it represents a clear environmental hazard and needs to be cleaned up as soon as possible. CDM revenues would allow the prefecture to achieve this.

The images of the actual site show that the location appears to be only rudimentarily managed. It also demonstrates that there are a sizeable number of waste collectors ("catadores") that survive on reselling waste with some residual value. It is therefore paramount that this project also takes into consideration the fate of the community of catadores that live close to the current site.

SECTION G. <u>Stakeholders'</u> comments

As with any CDM project activity PDD, this section will only be completed during the validation phase of the project cycle by the chosen Designated operational entity (DOE) and in cooperation with the relevant project participants. This section will reflect comments submitted pertaining to the <u>ACTUAL</u> project engineering plans.

G.1.	Brief description how comments by local stakeholders have been invited and compiled:
>>	
G.2.	Summary of the comments received:
>>	
G.3.	Report on how due account was taken of any comments received:
~~	

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:	MaxAmbiental – Project Developer
Street/P.O.Box:	Avenida Brigadeiro Faria Lima, 2894 cj. 44
Building:	
City:	São Paulo
State/Region:	SP
Postfix/ZIP:	01452 938
Country:	Brazil
Telephone:	+55 11 3709 3440
FAX:	+55 11 3709 3446
E-Mail:	
URL:	www.maxambiental.com.br
Represented by:	Paulo Braga
Title:	Director
Salutation:	
Last Name:	Braga
Middle Name:	
First Name:	Paulo
Department:	
Mobile:	+55 11 8271 3626
Direct FAX:	+55 11 3709 3446
Direct tel:	+55 11 3709 3440
Personal E-Mail:	Paulo@maxambiental.com.br

Organization:	Xenex do Brasil, Ltda. – Project Developer
Street/P.O.Box:	Rua Manuel da Nobrega 354, cj. 82
Building:	
City:	São Paulo, Paraiso
State/Region:	SP
Postfix/ZIP:	04001 001
Country:	Brazil
Telephone:	+55 11 3262 0854
FAX:	
E-Mail:	xenexbr@nethall.com.br
URL:	
Represented by:	Junichi Ishihara
Title:	Director President
Salutation:	
Last Name:	Ishihara
Middle Name:	
First Name:	Junichi
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	

Organization:	Banco Sumitomo Mitsui Brasileiro S.A Project Sponsor
Street/P.O.Box:	Avenida Paulista, 37 – 11th Floor
Building:	
City:	São Paulo
State/Region:	SP
Postfix/ZIP:	01311 902
Country:	Brazil
Telephone:	+55 11 3178 8129
FAX:	+55 11 3178 8190
E-Mail:	
URL:	www.smbcgroup.com.br
Represented by:	Hajime Uchida
Title:	Marketing Group – Japanese Corporate General Manager
Salutation:	
Last Name:	Uchida
Middle Name:	
First Name:	Hajime
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	Hajime_uchida@smbcgroup.com.br

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

The project will not receive any public funding from Parties listed in Annex I of the UNFCCC.

ANNEX 3

BASELINE INFORMATION

Project Cashflow 1			
Landfill/Project Name:	Itanhaem		

		2006	2007	2008	2009	2010	2011	2012
	Unit	1et	2001 2nd	2000 3rd		5th	6th	7th
Carbon Cashflow		150	2110	oru	-101	001	UII	7 (11
	m2/h	000	04.4	707	007	000	540	40.4
	1113/11	900	814	/3/	667	603	546	494
Total Adj. Net Emission Reductions	Tonnes CO2e/yr	0	21,192	19,175	17,350	15,699	14,205	12,853
Cost								
Annual Operation Cost		-12,552	-12,552	-12,552	-12,552	-12,552	-12,552	-12,552
Annual Mentenace Cost		-18,000	-18,000	-18,000	-18,000	-18,000	-18,000	-18,000
Validation & Verification Cost			-5,000	-5,000	-5,000	-5,000	-5,000	-5,000
Adaptation Fee/CER	US\$0.2		-4,238	-3,835	-3,470	-3,140	-2,841	-2,571
Electricity Generation Cost	US\$70.0	0	0	0	0	0	0	0
Depreciation		-49,191	-49,191	-49,191	-49,191	-49,191	-49,191	-49,191
Interest		-32,794	-30,306	-27,669	-24,873	-21,910	-18,769	-15,439
Total Cost		-112,538	-119,288	-116,247	-113,087	-109,793	-106,353	-102,753
Income								
Price of CER	US\$/tCO2	8.0	8.0	8.0	8.0	8.0	8.0	8.0
CER Sales	US\$8.0	0	169,534	153,401	138,803	125,594	113,642	102,828
Electricity Tariff	US\$/MWh	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Electricity Sales	US\$50.0	0	0	0	0	0	0	0
Total Income		0	169,534	153,401	138,803	125,594	113,642	102,828
Balance		-112,538	50,246	37,153	25,716	15,801	7,289	74
Income Tax		0	-17,084	-12,632	-8,743	-5,372	-1,749	-18
Current Income		-112,538	33,162	24,521	16,973	10,428	5,539	56
NPV(21years)	494,338							
IRR(21years)	4.0%							

UNFOCO

CDM – Executive Board

Annex 4

MONITORING PLAN

The monitoring plan for the Carapicuíba LFG Flaring project activity is based on the monitoring methodology of ACM0001. The following diagram is provided.

Please note that for this project activity there is no boiler or power plant but only a flare.

The principal variables that need to be calculated for monitoring purposes are as follows:

- 1. MD_{project, y} for every project year
- 2. MD_{reg, y} for every project year

The input data required for this will be stored in the following spreadsheet and archived for at least two years after the end of the crediting period or the last issuance of CERs for this project activity whatever occurs later.

Monitoring Plan for Itanhaem Landfill gas capture and flaring project

Year	Units	Measurement	2006
Project Year			1
Total amount of LFG flared	m3	Flow Meter	
Methane content of exhaust gas	m3 CH4/m3 ExGas	Gas analyzer	
Operation time of flare	hours	Flare	
Flare Combustion Efficiency	%	Calculated	
Methane content of landfill gas	m3 CH4/m3 LFG	Gas analyzer	
Temperature of LFG	Degree Celsius	Manifold	
Pressure of LFG	Pa	Manifold	
Density of methane	tonnes CH4/m3 CH4	Calculated	
Regulatory requirements relating to LFG projects			
Annex 5

ELECTRICITY GENERATING OPTION

Annex 5: Electricity Generation Potential – Itanhaem Landfill

Electricity Generation Itanhaem

	l la it	2006	2007	2008	2009	2010	2011	2012
	Unit	1st	2nd	3rd	4th	5th	6th	7th
Carbon Cashflow								
Total LFG emitted	m3/h	900	814	737	667	603	546	494
Carbon CF								
Total Adj. Net Emission Reductions	Tonnes CO2e/yr	0	21,192	19,175	17,350	15,699	14,205	12,853
Electricity Generation(MWh)		0	3,189	3,189	3,189	3,189	3,189	3,189
Cost								
Annual Operation Cost		-12,552	-12,552	-12,552	-12,552	-12,552	-12,552	-12,552
Annual Mentenace Cost		-18,000	-18,000	-18,000	-18,000	-18,000	-18,000	-18,000
Validation & Verification Cost			-5,000	-5,000	-5,000	-5,000	-5,000	-5,000
Adaptation Fee/CER	US\$0.2		-4,238	-3,835	-3,470	-3,140	-2,841	-2,571
Electricity Generation Cost	US\$70.0	0	-223,205	-223,205	-223,205	-223,205	-223,205	-223,205
Depreciation		-49,191	-49,191	-49,191	-49,191	-49,191	-49,191	-49,191
Interest		-32,794	-30,306	-27,669	-24,873	-21,910	-18,769	-15,439
Total Cost		-112,538	-342,493	-339,452	-336,291	-332,998	-329,558	-325,958
Income								
Price of CER	US\$/tCO2	8.0	8.0	8.0	8.0	8.0	8.0	8.0
CER Sales	US\$8.0	0	169,534	153,401	138,803	125,594	113,642	102,828
Electricity Tariff	US\$/MWh	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Electricity Sales	US\$50.0	0	159,432	159,432	159,432	159,432	159,432	159,432
Total Income		0	328,966	312,833	298,235	285,026	273,074	262,260
Balance		-112,538	-13,527	-26,619	-38,057	-47,972	-56,484	-63,699
Income Tax		0	0	0	0	0	0	0
Current Income		-112,538	-13,527	-26,619	-38,057	-47,972	-56,484	-63,699
	07.446							
NPV(21years)	-27,448							
IRR(21years)	#DIV/0!							

page 181

UNFCCC

Electricity Market Situation in Brazil

Other than financial return from the carbon market, the only potential revenue to the project derives from the use of gas to produce electricity. The feasibility of this project is, thus, dependent on factors related to energy sector. It is necessary to conduct a financial analysis to determine whether the project is an economically attractive course of action.

Historically, tariff levels in Brazil have been relatively low due to a centralized pricing structure fixed by the government. The government agency ANEEL (Electric Energy National Agency) controls the commercialisation and distribution of through pre-established contracts and prices. While small tariff increases have been observed in the last few years, they are insignificant and not enough to indicate that this scenario is going to change significantly. A free electricity market in Brazil is still in its infancy.

Source: http://europa.eu.int/comm/energy_transport/atlas/assets/images/Image71.gif

In addition to this electricity generation using landfill gas cannot rely on offsetting carbon income. Due to its enormous hydropower capacity Brazil's energy sector already has low carbon intensity and a correspondingly low carbon emission factor. There is also a lack of governmental pricing policies to support projects that replace fossil energy with new sources of clean energy.

The generation of electricity from landfill gas in Brazil carries several risks. There are clear managerial risks owing to the fact that few landfill operators have the requisite skills and expertise to negotiate long-term power purchase agreements. Moreover, there is considerable uncertainty attached to the production of landfill gas and hence to the reliability of electricity supply. Several external factors such as precipitation levels, waste composition and temperatures can severely impact gas production levels. Most of the required generation technology needs to be imported from international companies, which exposes the project to potential adverse changes in the exchange rate. Given these risks, electricity generation from landfill gas is seen as 'unproven' technology by local investors.

page 182

Itanhaem Generation Potential and Financial Analysis

A financial analysis was undertaken using assumptions that are highly conservative from the point of view of gas production. It needs to be noted that the landfill gas generation model used, the US EPA First Order Decay Model, has an inherent error up to 50%. A value of 4.95 kWh/m3 was used for the energy content of landfill gas. This number presents an accepted average and was also used in the calculation of the energy potential of the NovaGerar CDM project. According to the estimates used, the Itanhaem landfill will produce **41,714,201** m³ of landfill gas between the start of the project in 2006 and the end of the first Kyoto Commitment Period in 2012. It is important to bear in mind that this number is purely an <u>estimate</u> and actual volumes could be considerably lower.

Taking into account a generator efficiency of 38%⁶³ (industry average for LFGTE generator sets from companies such as Caterpillar and Jenbacher), a methane collection efficiency of 75%, and insurance factor of 20%, a parasitic loss factor of 5% and 91% generator availability, it is estimated that between 2006 and 2012, approximately **40,699 MWh** of electricity will be produced by the Itanhaem landfill.

Source: www.dti.gov.uk/.../nr47/html/landfill_gas.htm

The US EPA estimates that levelized capital and O&M costs per kWh of landfill gas derived electricity are about 7 cents or US\$70/MWh⁶⁴. This is of course only an estimate, but to arrive at more accurate numbers it would be necessary to undertake a more detailed study. For the purpose of this assessment it was deemed to be sufficient to use a generally accepted factor. Given that LFGTE is already an established industry in the US, it is likely that costs in Brazil would be even higher as they would have to factor in importation costs as well as FOREX risk and additional expenses related to lack of experience. At the same time the price currently offered to small producer of electricity by the Brazilian regulatory authority (ANEEL) is only U\$58.4/MWh (as of November 2005 the tariff was fixed at R\$ 146.00 and assuming a long-term exchange rate of 2.50 R\$/US\$). Comparing the costs and revenue per MWh it becomes clear that at the current time it is not financially viable to undertake Landfill gas to Energy projects in Brazil.

In addition to this the CERs that could be earned from the displacement of fossil-derived electricity through the generation of carbon neutral LFG energy are not sufficient to offset the estimated losses. The

 $^{^{63}\} http://www.ge-energy.com/prod_serv/products/recip_engines/en/downloads/type2_en.pdf$

⁶⁴ http://www.forester.net/mw_0401_retail.html

page 183

South-Southeast-Midwest electricity grid has a generally accepted Carbon Emission Factor of 0.249 tCO2e/MWh⁶⁵, which is relatively low. Between 2006 and 2012 the Itanhaem landfill project is hence estimated to generate a net amount of **10,134 tCO2e**. At a price of **US\$10/CER**, the electricity-related carbon component is not sufficient to offset the high generating costs/low electricity tariffs.

Therefore for the Itanhaem landfill the NPV of the electricity and related carbon components over 7 years comes to **negative US\$1,000,473**. Thus the generation of electricity is currently not considered to be an option for the Itanhaem CDM project.

⁶⁵ This CEF has been approved by the Brazilian Designated National Authority

<u>PDD</u> <u>(2)カラピクイバ市</u>

page 185

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 02 - in effect as of: 1 July 2004)

CONTENTS

- B. Application of a <u>baseline methodology</u>
- C. Duration of the project activity / Crediting period
- D. Application of a <u>monitoring methodology</u> and plan
- E. Estimation of GHG emissions by sources
- F. Environmental impacts
- G. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: Baseline information
- Annex 4: Monitoring plan

ATTENTION PLEASE READ

This is a DRAFT version of the PDD. The ownership of the carbon credits has not been satisfactorily proven to the carbon advisors. There is as yet no engineering project. All numbers pertaining to the engineering part of the PDD are based on very rough estimates and CANNOT be submitted to the validators. No stakeholder meeting has yet been planned or held. No environmental licences have been submitted to the carbon advisor to date.

This DRAFT CANNOT yet be submitted for validation.

page 186

SECTION A. General description of project activity

A.1 Title of the <u>project activity</u>:

Project Name: Landfill Gas Recovery and Flaring Project at Carapicuíba Landfill in São Paulo

Version: 2.2

Date: Monday, 14 February 2006

A.2. Description of the project activity:

The project partners are proposing a CDM project activity, which will result in reduced GHG emissions and contribute to local sustainable development in the Brazilian state of São Paulo. The project activity will involve the capture and flaring of methane, which is a major constituent of landfill gas (LFG). LFG capture and flaring is not mandated by Brazilian law nor is it a common practice to flare a large proportion of the produced gas. Customarily only a small fraction of LFG is flared to reduce risk of explosion. The Carapicuíba will therefore provide additional environmental benefits by flaring the majority of the gas produced.

The landfill in Carapicuíba was opened in **1965** and ceased operations in **2001**. The site covers a total of 110,000 m2 and contains a total waste volume of approximately 1,800,000 m3 (equivalent to approximately $600,000^{66}$ tonnes of municipal solid waste). It is located in the municipality of Carapicuíba in the state of São Paulo. To date the landfill has no leachate management system, no liner and no monitoring system and is only sporadically covered with a sand and clay mixture.

The aim of this specific project activity is to install landfill gas collection and flaring equipment to reduce methane emissions to the atmosphere. At the present time electricity generation using captured landfill methane is not foreseen due to the unfavorable pricing regime currently prevailing in Brazil. However, all equipment used can be expanded to include electricity generation at a later stage to accommodate future changes in electricity tariffs. At present the ultimate rationale of the project is the combustion of methane to reduce anthropogenic greenhouse gas (GHG) emissions from the decomposition of organic waste in the landfill. These emissions reductions will be eligible for Certified Emissions Reductions (CERs) under the Kyoto Protocol's Clean Development Mechanism (CDM).

The project activity will have a series of positive social and environmental impacts, especially when compared to traditional Brazilian waste disposal sites. This is important in view of guidelines governing the CDM, which stipulate a contribution to sustainable development and local environmental protection. The Carapicuíba project will flare the majority of generated methane and thus eliminate the negative impact of landfill gas emissions. In addition this project provides additional jobs in the municipality and is a step in the right direction towards sustainable management of municipal waste. There will be, for example, proper control over leachate collection, which is necessary to ensure reliable gas collection and avoid the flooding of gas collection pipes with leachate. At a later stage, some electricity may be generated with the LFG, although the generated electricity will be used only for onsite usage. This has not been taken into account for the proposed CDM project activity.

⁶⁶ The total volume used in the LFG estimation is **616,665 tonnes** by the end of 2001. This number was used, as there is uncertainty in what month the landfill opened and closed.

UNECC

CDM – Executive Board

page 187

Greenhouse gas emission reductions will result from the combustion of the recovered methane contained in the landfill gas. It is estimated that this project will generate 45,537 CERs within the first 7-year crediting period (2006-2012).

There are several contributions to sustainable development.

Environmental benefits:

The local environment benefits from the highest European waste management standards that are applied to this site including:

The project will contribute to the continued environmental improvements by providing the • infrastructure to reduce greenhouse gas emissions.

Technology transfer:

The project will be one of the first in Brazil to recover and flare landfill gas from a closed landfill operation. As such it will act as a showcase project for landfill owners and operators as well as other CDM project developers.

A.3. **Project participants:**

Please list project participants and Party(ies) involved and provide contact information in Annex 1. Information shall be in indicated using the following tabular format.

Name of Party involved ((host) indicates a host Party)	Private and/or public entity(ies) project participants (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)
Brazil (host)	Prefecture of Carapicuíba; MaxAmbiental; Xenex do Brasil	No
	Ltda.	

(*) In accordance with the CDM modalities and procedures, at the time of making the CDM-PDD public at the stage of validation, a Party involved may or may not have provided its approval. At the time of requesting registration, the approval by the Party(ies) involved is required.

The Prefecture of Carapicuíba owns the Carapicuíba landfill. The carbon advisors are MaxAmbiental and Xenex do Brasil Ltda. Banco Sumitomo Mitsui Brasileiro SA is financing the baseline study and PDD as well as the project activity (For further details see Annex 1).

A.4. Technical description of the project activity:

A.4.1.

Location of the project activity:

A.4.1.1. Host Party(ies):

Brazil

A.4.1.2.	Region/State/Province etc.:	
----------	------------------------------------	--

page 188

UNFCCC

Carapicuíba, São Paulo

A.4.1.3. City/Town/Community etc:	
-----------------------------------	--

Municipality of Carapicuíba

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

The Municipality of Carapicuíba lies 23 km from the center of the city of São Paulo and borders the cities of Barueri in the north, Cotia in the south, Osasco in the east, and Jandira in the west. It covers an area of 34 square kilometers. It can be reached by road via the following motorways: Presidente Castelo Branco in the north, Raposo Tavares in the south, and Avenida dos Autonomistas in the east (Osasco). It belongs to the First Administrative Region of Greater São Paulo.

page 189

A.4.2.	Category(ies) of project activity:
Sectoral scope:	13 - Waste handling and disposal
Project activity:	Landfill gas capture and flaring project
A 4 3	Technology to be employed by the project activity.

The project will involve proven technology and hardware for the extraction and treatment of landfill gas.

Below is a brief summary of the equipment and technology proposed for this project:

The landfill gas collection system consists of the following components:

- Vertical wells (perforated concrete pipes) to ensure connectivity of all layers. A high-density perforated pipe is installed within the center of the well, which is backfilled with gravel.
- Surface runoffs as well as percolate are collected and then channeled to wastewater treatment plant.
- Landfill gas extraction wells will also be drilled into the landfill once areas reach their final elevation and final cover has been applied. The vertical wells consist of a pipe perforated in its lower part, placed in a drilled borehole in the waste, backfilled with gravel and sealed at the surface. Both well types will be equipped with wellheads that enable monitoring of gas flow and quality. Also valves are provided to allow adjustment of the available vacuum at each well.
- In order to maximize the extraction capacity horizontal drains will also be installed in the waste mass. Preliminarily, the installation of a series of horizontal drains with a horizontal separation distance of 60 meters installed every 5 meters in waste lift height is envisioned. The horizontal drains will consist of perforated pipes surrounded gravel or equivalent drainage material. The drains will be interconnected to the vertical well system.
- The flaring equipment consists of an enclosed flare, 2 compressors to require the vacuum in the collection network, an online gas analyzer, and valves and tubes.
- A condensate extraction and storage system designed at strategic low points throughout the gas system.

Typical Schematic of Modern Landfill

page 190

A.4.4. Brief explanation of how the anthropogenic emissions of anthropogenic greenhouse gas (GHGs) by sources are to be reduced by the proposed CDM <u>project activity</u>, including why the emission reductions would not occur in the absence of the proposed <u>project activity</u>, taking into account national and/or sectoral policies and circumstances:

The project activity intends to collect and flare the methane generated by the anaerobic decomposition of the organic component of the municipal solid waste (MSW) landfilled at the Carapicuíba landfill. The combustion of the methane produces carbon dioxide. Taking into account the respective Global Warming Potentials (GWP) of methane and CO_2 this combustion signifies a 21-fold reduction of GHG emissions.

The baseline scenario is defined as the most likely future scenario in the absence of the project activity. Based on the analysis of possible alternatives, the baseline scenario is the continued, uncontrolled release of landfill gas into the atmosphere.

The results of the financial analysis demonstrate that the project activity is not the most attractive course of action economically speaking and therefore this kind of project is not part of the baseline scenario. Hence the Carapicuíba Project is considered to be additional.

page 191

A.4.4.1. Estimated	amount of emission reductions over the chosen
crediting period:	
VEAD	ESTIMATED ANNUAL EMISSION REDUCTIONS
TEAK	IN TCO ₂ E
2006	0
2007	9,604
2008	8,690
2009	7,863
2010	7,115
2011	6,438
2012	5,825
Total emission reductions 7 years (tCO2e)	45,537
Renewable Crediting Period	$3 \ge 7 \text{ years} = 21 \text{ years}$
Mean annual emission reductions (t CO2e)	6,505

The estimate of total reductions from the project is 45,537 tonnes of CO_2e over the first 7-year crediting period.

A.4.5. Public funding of the project activity:

There is no Official Development Assistance used in this project activity.

SECTION B. Application of a <u>baseline methodology</u>

B.1. Title and reference of the <u>approved baseline methodology</u> applied to the <u>project activity</u>:

ACM0001: Consolidated Methodology for Landfill Gas Project Activities

B.1.1. Justification of the choice of the methodology and why it is applicable to the project activity:

This consolidated methodology was developed specifically for landfill gas capture and flaring. The Carapicuíba project is similar to the Nova Gerar project, which served as one of the examples included in the consolidated methodology ACM0001.

B.2. Description of how the methodology is applied in the context of the <u>project activity</u>:

The project activity will flare a greater proportion of the landfill gas generated by the decomposition of organic waste in the Carapicuíba landfill, than would have occurred in the absence of the project activity. In the baseline scenario (i.e. the absence of the project) only 20% of all gas generated are customarily flared for safety reasons. The project activity leads to higher collection and flaring efficiency through the installation of modern LFG collection and flaring equipment. Therefore the project activity will reduce total GHG emissions below the GHG emissions of the baseline scenario.

UNFCC

page 192

Baseline emissions are calculated using a first order decay model proposed by the US Environmental Protection Agency as recommended in the 1996 IPCC Guidelines. Using this model the methane emissions that would have been released to the atmosphere in the absence of the project activity are calculated. A fraction of those emissions need to be discounted to take account of a minimum amount of flaring that does customarily occur for safety reasons. In the case of Brazil this is usually less than 20%. Hence the use of 20% for baseline flaring is considered to be conservative.

For the determination of the baseline scenario a number of financial and market data had to be used. The various sources are listed in the table below.

Key data for determining baseline scenario	Data Unit	Data Source
Project activity and plausible	-	Project Participants (PP),
alternatives to it		Industry data
National and local rules and regulations and policies	-	PP, Government
Baseline IRR	%	Calculated
Project IRR without Carbon	%	Calculated
Threshold for investment (IRR/NPV/payback period)	%, etc.	PP, Industry
Equipment costs	Brazilian Reais (R\$)	Suppliers, PP
Operating costs	R\$	PP
Revenue from operations	R\$	PP
Market data (inflation, interest, tax, discount rate, etc.)	%	Relevant indices
Landfill gas generation	1/vr: m ³ /tonne	Us EPA, Brazil specific data
parameters	17 yr, m / tohne	(SCS Engineers)
Methane collection parameters	%	IPCC, PP empirical data
Global Warming Potentials	-	IPCC
Proportion of methane flared in baseline	%	Industry Data

B.3. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM <u>project activity</u>:

The proposed project activity will result in the reduction of greenhouse gases that would not occur if the project were not implemented. The numerous barriers and risks associated with the implementation of the proposed project activity that are identified clearly demonstrate that this project activity is not the baseline as usual scenario.

The tool used to demonstrate the additionality is the "Consolidated tool for demonstration of additionality", which is part of methodology **ACM0001**: Consolidated Methodology for Landfill Gas Project Activities. This tool for assessing additionality follows a step-based approach. Explanation on how additionality for the proposed project activity is proven following the consolidated tool for additionality follows.

F) The baseline approach and accompanying formulae described in ACM0001 are directly employed to the project activity under discussion.

G) The "Tool for the demonstration and assessment of additionality" is used to establish the additionality of the Carapicuíba LFG Capture and Flaring project activity.

A)

Applicability

This methodology is applicable to landfill gas capture project activities, where the baseline scenario is the partial or total atmospheric release of the gas and the project activities include situations such as:

a) The captured gas is flared; or

b) The captured gas is used to produce energy (e.g. electricity/thermal energy), but no emission reductions are claimed for displacing or avoiding energy from other sources1; or

c) The captured gas is used to produce energy (e.g. electricity/thermal energy), and emission reductions are claimed for displacing or avoiding energy generation from other sources. In this case a baseline methodology for electricity and/or thermal energy displaced shall be provided or an approved one used, including the ACM0002 "Consolidated Methodology for Grid-Connected Power Generation from Renewable". If capacity of electricity generated is less than 15MW, and/or thermal energy displaced is less than 54 TJ (15GWh), small-scale methodologies can be used.

This baseline methodology shall be used in conjunction with the approved monitoring methodology ACM0001 ("Consolidated monitoring methodology for landfill gas project activities").

Comments:

As almost all of the LFG produced in the Carapicuíba landfill will be <u>captured</u> and <u>flared</u>, the project activity meets situation "a)" described above; hence this methodology is applicable to the project activity.

Emission Reduction

The greenhouse gas emission reduction achieved by the project activity during a given year "y" (ER_y) is the difference between the amount of methane actually destroyed/combusted during the year $(MD_{project,y})$ and the amount of methane that would have been destroyed/combusted during the year in the absence of the project activity $(MD_{reg,y})$ times the approved Global Warming Potential value for methane (GWP_{CH4}) , plus the net quantity of electricity displaced during the year (EG_y) multiplied by the CO_2 emissions intensity of the electricity displaced ($CEF_{electricity,y}$) plus the quantity of thermal energy displaced during the year (ET_y) multiplied by the CO_2 emissions intensity of the thermal energy displaced ($CEF_{thermal,y}$). Electricity and thermal energy emission reductions apply to case (c) only.

$$ER_{y} = (MD_{project,y} - MD_{reg,y}) \times GWP_{CH4} + EG_{y} \times CEF_{electricity,y} + ET_{y} \times CEF_{thermal,y}$$
(1)

ERy is measured in tonnes of CO2 equivalents (tCO2e). $MD_{project,y}$ and $MD_{reg,y}$ are measured in tonnes of methane (tCH₄). The approved Global Warming Potential value for methane (GWP_{CH4}) for the first commitment period is 21 tCO₂e/tCH₄. EG_y is measured in megawatt hours (MWh). The CO2 emissions intensity, CEF_{electricity,y}, is measured in tonnes of CO₂ equivalents per megawatt hour (t CO₂e/MWh) and ET_y is measured in TeraJoules (TJ) and CEF_{thermal,y} is measured in terms of tonnes of CO₂ equivalents per TJ (t CO₂e/TJ).

In the case where the $MD_{reg,y}$ is given/defined as a quantity that quantity will be used.

page 194

In cases where regulatory or contractual requirements do not specify $MD_{reg,y}$ an "Adjustment Factor" (AF) shall be used and justified, taking into account the project context.

 $MD_{reg,y} = MD_{project,y} \times AF$ (2)

The following examples provide guidance on how to estimate AF:

- In cases where a specific system for collection and destruction of methane is mandated by regulatory or contractual requirements, the ratio of the destruction efficiency of that system to the destruction efficiency of the system used in the project activity shall be used.

- In cases where a specific percentage of the "generated" amount of methane to be collected and destroyed is specified in the contract or mandated by regulations, this percentage divided by an assumed efficiency for the collection and destruction system used in the project activity shall be used.

Comments:

In the case of this project activity there are neither regulatory nor contractual requirements for the combustion of the methane produced in the baseline scenario. The "Adjustment Factor" used for $MD_{reg, y}$ is 20%, a value that conservatively estimates the amount of gas that would be flared in the absence of the project activity to avoid explosion risks.

Also, this particular project does not intend to generate electricity or thermal energy from the captured LFG. Therefore, greenhouse gas emission reductions related to this source are not to be considered in the calculation of ER_y . Therefore Formula (1) can be re-written as:

$$ER_{y} = \left(MD_{project,y} - MD_{reg,y}\right) \times GWP_{CH 4}$$

The approved Global Warming Potential (GWP) of Methane for the first commitment period is 21 t CO_2 e/tCH₄.

Project proponents should provide an ex ante estimate of emissions reductions, by projecting the future GHG emissions of the landfill. In doing so, verifiable methods should be used. Ex ante emission estimates may have an influence on $MD_{reg,y}$. $MD_{project,y}$ will be determined ex post by metering the actual quantity of methane captured and destroyed once the project activity is operational.

The methane destroyed by the project activity $(MD_{project,y})$ during a year is determined by monitoring the quantity of methane actually flared and gas used to generate electricity and/or produce thermal energy, if applicable.

$$MD_{project,y} = MD_{flared,y} + MD_{electricity,y} + MD_{thermal,y}$$
(3)

$$MD_{flared,y} = LFG_{flared,y} \times w_{ch4} \times D_{ch4} \times FE \quad (4)$$

Where $MD_{flared,y}$ is the quantity of methane destroyed by flaring, $LFG_{flared,y}$ is the quantity of landfill gas flared during the year measured in cubic meters (m^3) , wCH4,y is the average methane fraction of the landfill gas as measured during the year and expressed as a fraction (in $m^3 CH_4 / m^3 LFG$), FE is the flare efficiency (the fraction of the methane destroyed) and D_{CH4} is the methane density expressed in tonnes of methane per cubic meter of methane (tCH₄/m³CH₄).

UNFO

page 195

$$MD_{electricity,y} = LFG_{electricity,y} \times W_{ch4} \times D_{ch4}$$
(5)

Where $MD_{electricity,y}$ is the quantity of methane destroyed by generation of electricity and $LFG_{electricity,y}$ is the quantity of landfill gas fed into electricity generator.

$$MD_{thermal,v} = LFG_{thermal,v} \times W_{ch4} \times D_{ch4}$$
 (6)

Where $MD_{thermal,y}$ is the quantity of methane destroyed for the generation of thermal energy and $LFG_{thermal,y}$ is the quantity of landfill gas fed into the boiler.

Comments:

Again, since no electricity or thermal energy will be generated, the emission reductions will be equivalent to the amount of methane flared only, thus:

$$MD_{project,y} = MD_{flared,y}$$

Consequently equations (5) and (6) will not be used for this specific project activity.

For the purpose of estimating baseline emissions and overall emission reductions of the project activity the USEPA's First Order Decay Model has been used. A detailed description and formulae used are provided in Section D.2.1.4.

According to ACM0001 at standard temperature and pressure (0 degree Celsius and 1,013 bar) the density of methane is $0.000656 \text{ tCH}_4/\text{m}^3\text{CH}_4$.

Project Boundary

The project boundary is the site of the project activity where the gas is captured and destroyed/used. Possible CO_2 emissions resulting from combustion of fuels other than the methane recovered should be accounted as project emissions. Such emissions may include fuel combustion due to pumping and collection of landfill gas or fuel combustion for transport of generated heat to the consumer locations. In addition, electricity required for the operation of the project activity, including transport of heat, should be accounted and monitored. Where the project activity involves electricity generation, only the net quantity of electricity fed into the grid should be used in equation (1) above to account for emission reductions due to displacement of electricity in other power plants. Where the project activity does not involve electricity generation, project participants should account for CO_2 emissions by multiplying the quantity of electricity required with the CO_2 emissions intensity of the electricity displaced ($CEF_{electricity}$).

Comments:

For more detailed information concerning the project boundary, please refer to Section B.4.

Baseline

The baseline is the atmospheric release of the gas and the baseline methodology considers that some of the methane generated by the landfill may be captured and destroyed to comply with regulations or contractual requirements, or to address safety and odor concerns.

Comments:

page 196

As mentioned above, flaring of landfill gas is not a common or required practice in Brazil. However, it is common to flare a small fraction (usually around 20%) of the produced gas to reduce the risk of explosion. Hence this fraction is deducted from the estimated total emissions of LFG from the landfill. Total estimated LFG emissions are calculated in Section D.2.1.4.

Leakage

No leakage effects need to be accounted under this methodology.

B)

Additionality

The additionality of the project activity shall be demonstrated and assessed using the latest version of the "Tool for the demonstration and assessment of additionality" agreed by the CDM Executive Board, which is available on the UNFCCC CDM web site.

Using the "Tool for demonstration and assessment of additionality":

Step 0: Preliminary screening based on the starting date of the project activity
Step 1: Identification of alternatives to the project activity consistent with the current laws and regulations
Step 2: Investment analysis
Step 4: Common practice analysis
Step 5: Impact of CDM registration

<u>Step 1:</u>

<u>Sub-step 1a. Define alternatives to the project activity:</u> There are 3 possible baseline scenarios for the Carapicuíba landfill:

1) The landfill operator adheres to the business as usual practice of not collecting and flaring landfill gas from its waste operations or flaring just a small fraction of the gas, for safety reasons. This is in fact the approach taken by most waste management operations in Brazil. In this case, no power is generated at the site and the Brazilian power system remains unaffected.

2) The landfill operator invests in LFG collection and flaring but not in power generation (the proposed project activity). The Brazilian power system remains unaffected.

3) The landfill operator invests in power generation from LFG. The operation marginally reduces the generation of power from other grid-connected sources and hence avoids carbon emissions.

Sub-step 1b. Enforcement of applicable laws and regulations:

Current Brazilian legislation does not require that landfills collect and dispose of landfill gases, and there are very few landfills in operation in Brazil that have been designed to collect, flare or utilize the full amount of gas generated. Most of these, like the NovaGerar landfills, were designed and built in the last two years specifically as CDM projects. When LFG collection and flaring does happen, this occurs mainly on a voluntary basis to diminish explosion risk. Usually only a low proportion of methane is collected due to the utilization of unsophisticated collection systems and the occasional flooding of pipes with leachate.

UNFCC

CDM – Executive Board

page 197

The implementation of environmental protection legislation in Brazil has a relatively long lead-time, and the Ministry of the Environment has no immediate plans to introduce legislation requiring the collection and flaring of landfill gas from landfill sites. Historically in Brazil there also tends to be a gulf between stated regulations and practice with regards to the implementation of environmental protection legislation.

<u>Step 2:</u>

Sub-step 2a. Determine appropriate analysis method:

This project activity will not generate any financial or economic benefits other than CDM related income. Other than financial return from the carbon market, the only potential revenue to the project could come from the use of gas to produce electricity (Alternative 3 above). It is necessary to conduct a financial analysis to determine whether the project activity is an economically attractive course of action.

Historically, tariff levels have been relatively low due to a centralised pricing structure fixed by the government. The commercialisation and distribution of electricity is controlled by the government, through ANEEL (Electric Energy National Agency), by pre-establishing the contracts and the price range. While small tariff increases can be observed in the last few years, they are insignificant and not sufficient to indicate that this scenario is going to change now. The free electricity market is still very incipient in Brazil. These low tariffs make electricity generation from LFG economically unattractive at present.

Brazil's energy sector is already relatively clean and there is lack of governmental pricing policies to support and favour projects for the replacement of some non-renewable energy with new sources of clean electricity.

In parallel to the risks related to the sale of electricity, the exact amounts of landfill gas and the performance of the plants also concerns landfill operators. Given that the production of methane in the landfills can vary greatly and currently there isn't a single landfill site in Brazil generating electricity, this is seen as 'unproven' technology by local investors.

A sensitivity analysis was undertaken using assumptions that are highly conservative from the point of view of analysing environmental additionality, i.e. the best-case scenario IRR was calculated. It was assumed that the average daily waste placement rate at the Carapicuíba Landfill was around 46 daily tonnes culminating in a total of approximately **600,000 tonnes by 2001**⁶⁷. The volumes of landfill gas to be generated from the site were estimated using the US EPA First Order Decay Model. It was further assumed that the project has unlimited access to capital to invest in all the equipment necessary to use the increased amount of gas produced. The IRR (without carbon) is negative and still exposed to a series of risks (project, country, currency, etc.). These results show that even with the best possible conditions, which are obviously quite unrealistic, the project is still not an economically attractive course of action.

Sub-step 2b. Apply simple cost analysis N/a

<u>Step 4:</u>

⁶⁷ The total volume used in the LFG estimation is **616,665 tonnes** by the end of 2001. This number was used, as there is uncertainty in what month the landfill opened and closed.

page 198

According to the National GHG Emissions Inventory conducted by CETESB in 1994, 84% of Brazil's methane emissions came from the deposition of waste in uncontrolled rubbish dumps. This source is still responsible for a large part of the methane emitted since not much has changed in the business as usual scenario in the country. Besides, the amount of waste produced in Brazil has been increasing and, as estimated in 2000, Brazilians were already producing an average of 0.52 kg of waste per person everyday.⁶⁸

Nowadays 59% of the municipalities in Brazil still dispose of their waste in 'rubbish dumps' ("lixões") with no management, gas collection, water treatment, or regulation by environmental authorities whatsoever. Among the other 30% that use landfills, only 13% invest in sanitary landfills with sophisticated leachate collection and treatment systems.

Although, until the present moment there are no regulatory requirements for flaring landfill gas, a number of landfills are collecting a small amount of LFG for safety reasons. To maintain the calculations' conservatism and to assure the environmental integrity of the project, all emission reductions arising from the Carapicuíba site will be discounted by 20% in the project. This amount, as argued before, more than sufficiently covers the volume of gas that would be flared to follow the business-as usual scenario found in the landfills considered in this analysis.

Since there are no legislation requiring gas flaring in Brazilian landfills, besides the flaring of a small fraction for security (less than 20%), there is no reason to believe that an LFG system for the collection and flaring of all gas produced would be installed now, when the landfill is being built. The installation of even a rudimentary LFG collection system with passive venting or flaring would go beyond what is required by law and involve considerable expenses for the landfill operator without any offsetting revenues.

Given the regulatory situation in Brazil and the location and conditions of the landfill, the realization of alternative 2 is not required and would also not be an economically attractive course of action for the landfill owner and/or operator. It is therefore not considered a plausible alternative to the baseline scenario. Alternative 3 was also proven not to be financially feasible at Brazil's present electricity tariff levels. Consequently the only remaining plausible option is Alternative 1 (i.e. Business- as-usual: the construction of a landfill without any LFG treatment).

Step 5: Impact of CDM Registration

As can be seen form the attached financial analysis, successful CDM registration adds an additional revenue stream (in fact the only revenue stream) to the project activity. At a price of **US\$8 per CER** the project has a **net present value of US\$384,435** and an **IRR of <u>negative</u> 16.4%** over the first 7 years.

Baseline development in time and description of baseline scenario:

It has been shown that the BAU baseline holds at the time of preparing the project. The main determinants of this baseline are:

- Landfill regulations applicable to the site
- The economics of landfill gas utilization

It is possible that future regulatory requirements for landfills in Brazil will necessitate a higher level of

⁶⁸ CETESB and IGBE Census

LFG collection in the baseline scenario. If this occurs, the future baseline scenario will include compliance with such regulations.

It is also possible that the economics of LFG utilization for power generation may change at some time in the future. If such changes lead to a sufficient increase in the profitability of LFG utilization the proposed project could well be implemented without the help of carbon finance. If this occurs, the future baseline scenario will include an LFG to power project.

The baseline scenario for the proposed project can thus be described as follows:

No collection and treatment of LFG occurs at the Carapicuíba landfill site and this allows the uncontrolled release of most of the LFG to the atmosphere until some future time when the collection and treatment of LFG will either be required by law or becomes an economically attractive course of action. The monitoring plan for the project will re-evaluate the baseline scenario, report any changes during the crediting period and determine the new baseline scenario.

This baseline scenario is the basis for the determination of the project's ERs as per the monitoring plans instructions.

The Carapicuíba project baseline assumptions will be revisited every 7 years to ensure that the assumptions made in the baseline scenario still hold true, or they will be revised accordingly. In addition, the introduction of Brazilian legislation regarding the collection and flaring of landfill gas will be monitored **annually** as a part of the Monitoring Plan.

B.4. Description of how the definition of the <u>project boundary</u> related to the <u>baseline</u> <u>methodology</u> selected is applied to the <u>project activity</u>:

The following flow diagram describes the project boundary and includes those GHG emissions, which are "under the control of" the project participants, "significant" and "reasonably attributable".

In the light of these attributes, the following emissions have not been taken into account:

- Emissions from the transport of the waste to the landfill site, as these would occur even in the absence of the proposed project activity.
- Emissions from the vehicles used to compact and cover the waste, as these would also occur in the absence of the project activity.

page 200

UNFCCC

Figure B.4.1: Project Boundary

Emissions	Project Scenario	Baseline Scenario
Direct On-site	Emissions associated with the inefficiency of the	Uncontrolled release of practically
	LFG capture and flaring process. MaxAmbiental	all LFG generated by the landfill.
	estimates that only about 75% of total LFG produced	
	will be collected and then combusted to CO ₂ . Hence	
	25% of the total gas production will be released as	
	fugitive emissions.	
Direct Off-site	Transportation of equipment to project site -	None identified
	excluded because deemed to be insignificant	
Indirect On-site	NA	NA
Indirect Off-site	Transportation of waste to landfill site - excluded	Transportation of waste to landfill
	because would happen even in absence of project	site – excluded because would
		happen even in absence of project
	Table B.4.2: System emissions	

B.5. Details of <u>baseline</u> information, including the date of completion of the baseline study and the name of person (s)/entity (ies) determining the <u>baseline</u>:

The project is using ACM0001: Consolidated Methodology for Landfill Gas Project Activities

The baseline study was concluded in November 2005.

The entity determining the baseline and participating in the project, as the technical consultants are **MaxAmbiental** and **Xenex do Brasil Ltda** Brazil, listed in Annex 1 of this document.

SECTION C. Duration of the project activity / Crediting period

C.1 Duration of the project activity:

C.1.1. Starting date of the project activity:

The project start date has been set for the second quarter of 2006.

page 202

UNFCC

C.1.2. Expected operational lifetime of the project activity:

The landfill **closed in 2001**. The project activity is expected to last from 2006 to 2012. The actual project activity will have a renewable crediting period of 7 years. This period can be renewed twice.

C.2 Choice of the <u>crediting period</u> and related information:

The project activity will use a renewable crediting period as described below in the following section (C.2.1).

C.2.1. <u>Renewable crediting period</u>

C.2.1.1. Starting date of the first <u>crediting period</u>:

The starting date is 1st January 2006

C.2.1.2. Length of the first <u>crediting period</u>:

7 years duration per renewable period

C.2.2.	Fixed crediting	<u>z period</u> :
	C.2.2.1.	Starting date:

NA

|--|

NA

SECTION D. Application of a <u>monitoring methodology</u> and plan

D.1. Name and reference of <u>approved monitoring methodology</u> applied to the <u>project activity</u>:

ACM0001: "Consolidated monitoring methodology for landfill gas project activities"

D.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity</u>:

This monitoring methodology was specifically developed for landfill gas capture projects using baseline methodology ACM0001.

UNFCCC

CDM – Executive Board

page 203

D.2. 1. Option 1: Monitoring of the emissions in the project scenario and the <u>baseline scenario</u>

D.2.1.1. Data to be collected in order to monitor emissions from the project activity, and how this data will be archived:										
ID number (Please use numbers to ease cross-referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e),	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment		

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project (see discussion under D.4 below). The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

D.2.1.2. Description of formulae used to estimate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not applicable, see D.2.1.1.

D.2.1.3. Relevant data necessary for determining the <u>baseline</u> of anthropogenic emissions by sources of GHGs within the project boundary and how such data will be collected and archived:										
ID number (Please use numbers to ease cross-referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e),	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment		

The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

UNFCCC

CDM – Executive Board

page 204

D.2.1.4. Description of formulae used to estimate baseline emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not applicable. The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

D. 2.2. Option 2: Direct monitoring of emission reductions from the project activity (values should be consistent with those in section E).

This is the Option chosen for the monitoring methodology of the Igarassu landfill gas capture and flaring project. As stated in ACM0001: "The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform."

	D.2.2.1. Data to be collected in order to monitor emissions from the project activity, and how this data will be archived:										
ID number	Data variable	Source of data	Data	Measured	Recording	Proportion	How will the	Comment			
(Please use			unit	(m),	frequency	of data to	data be				
numbers to ease				calculated		be	archived?				
cross-referencing				(c),		monitored	(electronic/				
to table D.3)				estimated			paper)				
				(e),							
D2-1	Annual Waste landfilled	Truck balance	Tonnes	М	Arrival of	100%	Electronic	Measured on site			
					truck		(spreadsheet)				
D2-2	Flow of landfill gas to	Continuous	m^3	М	Continuous	100%	Electronic	Data will be aggregated			
	flares	Flow Meter					(spreadsheet)	monthly and yearly			
D2-3	Flare efficiency	Continuous	%	M &C	1)	N/a	Electronic	Data will be used to test			
	determined by 1)	methane			Continuously		(spreadsheet)	and, if necessary,			
	operating hours	analyser			2) Quarterly			correct the flare's			
	And							efficiency rating			
	2) Methane content in										
	exhaust gas										
D2-4	Methane fraction in	Continuous	%	<i>M &C</i>	Continuous	100%	Electronic	Data will be aggregated			
	LFG	methane					(spreadsheet)	monthly and yearly			
		analyser									

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 02

UNFCCC

CDM – Executive Board

page 205

D2-5	Gas pressure	Pressure gauge	Pa	М	Continuous	100%	Electronic (spreadsheet)	Data will be used to calculate methane density
D2-6	Gas temperature	Thermometer	Deg. Celsius	М	Continuous	100%	Electronic (spreadsheet)	Data will be used to calculate methane density
D2-7	Amount of methane flared	N/a	Tonnes of CH ₄	M & C	Daily	100%	Electronic (spreadsheet)	It can be measured or calculated with the following data: LFG flow to flare, methane fraction in LFG, LFG temperature and pressure, flare temperature, and flare working hours
D2-8	Amount of methane flaring required in baseline	N/a	Tonnes of CH4	С	Daily	100%	Electronic (spreadsheet)	20% of the amount of methane flared
D2-9	Regulatory requirements relating to landfill gas projects	Legislation	N/a	N/a	Annually	100%	Electronic (spreadsheet)	Required for any changes to the adjustment factor (ID 2-8)

D.2.2.2. Description of formulae used to calculate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.):

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project (see discussion under D.4 below). The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

UNFCCO

CDM – Executive Board

page 206

D.2.3.	freatment of <u>leakage</u> in the monitoring plan									
project activity	D.2.3.1.	If applicable	e, please	describe the da	ta and info	rmation that	will be collected	l in order to monitor l <u>eakage</u> effects of the		
project activity										
ID number	Data	Source of	Data	Measured	Recording	Proportion	How will the	Comment		
(Please use	variable	data	unit	(m),	frequency	of data to	data be			
numbers to ease				calculated (c)	1 2	be	archived?			
cross-referencing				or estimated		monitored	(electronic/			
to table D.3)				(e)			paper)			

Not applicable, there is no significant leakage in the project. See comment under D.2.3.2 below.

D.2.3.2. Description of formulae used to estimate leakage (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Only the construction of the LFG collection and utilization system will lead to some GHG emissions that would not have occurred in the absence of the project. These emissions are, however, insignificant. No increased in emissions are discernable other than those targeted and directly monitored by the project. Moreover, because the project employs direct monitoring of emission reductions, indirect emissions will not distort their calculation.

D.2.4. Description of formulae used to estimate emission reductions for the <u>project activity</u> (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

The following formulae are used to calculate emission reductions for the project activity using the direct monitoring data measured and collected during the lifetime of the project:

$$ER_{y} = \left(MD_{project,y} - MD_{reg,y}\right) \times GWP_{CH}$$

Where:

 $GWP_{CH 4}$ = Global Warming Potential of methane (IPCC, 1996)

UNFCCC

CDM – Executive Board

page 207

$$MD_{project,y} = LFG_{flared,y} \times W_{ch4} \times D_{ch4} \times FE$$

Where:

 $MD_{project, y}$ = Amount of methane actually **flared/destroyed** during year y

 $LFG_{flared,y}$ = Flow of landfill gas (m³)

 w_{ch4} = Methane fraction in LFG (%)

 D_{ch4} = Temperature/(Pressure * R) (kg/m³)

FE = Flare efficiency (%)

 $MD_{reg,v}$ = Amount of methane flaring required in baseline (or **customarily** carried out for safety reasons)

Where:

 $MD_{reg,y} = MD_{project,y} \times AF$

AF = Adjustment factor based on the project context, i.e. what fraction of methane is customarily flared for safety considerations.

D.3. Quality con	Quality control (QC) and quality assurance (QA) procedures are being undertaken for data monitored								
Data	Uncertainty	level of	data	Explain QA/QC procedures planned for these data, or why such procedures are not necessary.					
(Indicate table and	(High/Mediu	m/Low)							
ID number e.g.									
31.; 3.2.)									

UNFCCC

CDM – Executive Board

page 208

D-1	Low	All the arriving waste at the landfill will be immediately weighed using a truck balance, with regular				
		maintenance, and all the values recorded for future calculations				
D2-2	Low	Flow meters will be subject to a regular maintenance and testing regime to ensure accuracy				
D2-3	Low	Regular maintenance will ensure optimal operation of flares. Flare efficiency will be calibrated				
		annually or more often, if significant deviation from previous efficiency rating is observed.				
D2-4	Low	Gas analyzer will be subject to a regular maintenance and testing regime to ensure accuracy				
D2-5	Low	Meters will be subject to a regular maintenance and testing regime to ensure accuracy.				
D2-6	Low	Meters will be subject to a regular maintenance and testing regime to ensure accuracy.				
D2-7	Low	This value is going to be calculated and recorded using the data that is directly collected and monitored				
		at the site				
D2-8	Low	This data will be determined from current industry practice.				
D2-9	Low	This data will be determined from current legislation.				

D.4 Please describe the operational and management structure that the project operator will implement in order to monitor emission reductions and any <u>leakage</u> effects, generated by the <u>project activity</u>

As described before, the flaring station, where the emission reductions will actually happen, will be equipped with a measurement chain, which will allow direct daily measurement of the real amount of methane flared.

The management structures implemented in the Carapicuíba project are as follows:

Daily Monitoring Records: On the larger more active sites site staff takes daily gas field and engine readings. These readings are then checked for any anomalies before being filed for future reference. The readings can be taken at weekly or other set periods depending on the activity and consistency of the gas field and engine operation. All engines have telemetry links back to a central computer, which continually monitors the performance of the engine detecting problems and highlighting them for attention.

Gas Field Monitoring Records: Taken on a weekly basis or at periods to be determined. The Site Technician walks the gas field taking readings at each gas well and recording these on a form. These readings are then checked for any anomalies before being filed for future reference. A gas analyser will be installed in order to enable continuous accurate measurement of the methane content on the landfill gas. These gas field inspections will also observe occurrence of any unintended releases of landfill gas. In case unintended releases are observed, appropriate corrective action will be taken immediately.

Routine Reminders for Site Technicians: All Site Technicians are issued with a reminder list to guide them through their daily, weekly and monthly routine. The Engineering Manager, Operations Manager and Training and Health & Safety Co-ordinator go through this routine during site visits to ensure all aspects of the role are being performed. In addition monitoring records, oil sample reports and meter readings that are due, are checked to ensure they have arrived. Again, the telemetry link records a lot of the data automatically.

page 209

Site Audits: The Engineering Manager, Operations Manager and Training and Health & Safety Co-ordinator make regular site visits. In addition to ensuring the site routines are being performed any additional training needs are assessed and an audit is taken of any outstanding task on site.

Outstanding Work Notice: Following the Site Audit a 'Plant Outstanding Works Notice' is issued to the Site Technician listing all the jobs that the management team consider necessary to be undertaken. This is checked on subsequent site audits to ensure these jobs have been carried out.

Calibration of measurement equipment: Calibration of measurement equipment will be done monthly in accordance with the requirements of the National Measurement Regulation Agency, INMETRO (Instituto Nacional de Metrologia).

Corrective Actions: Management structure measures include procedures to handle and correct non-conformities in the implementation of the Project or this Monitoring Plan. In case such non-conformities are observed:

- An analysis of the nonconformity and its causes will be carried out immediately by landfill staff
- Landfill management will make a decision, in consultation with MaxAmbiental when needed, on appropriate corrective actions to eliminate the non-conformity and its causes.
- Corrective actions are implemented and reported back to Landfill management.

It will be assured that the landfill gas management team will receive support and appropriate training on the implementation of this Monitoring Plan and of the project

D.5 Name of person/entity determining the <u>monitoring methodology</u>:

Paulo Braga, MaxAmbiental

Xenex do Brasil, Ltda

(see Annex 1)

UNFCCC

page 211

SECTION E. Estimation of GHG emissions by sources

	Emission	Greenhouse	Validity	Quantity of
	Source	Gas		Emissions
			(2006-2012)	
	Landfill & LFG	Methane	Yes. Due to collection and flaring	46.095 tonnes of
	Flare		inefficiencies some gas will not be destroyed.	CO ₂ e
	1		Hence there will still be emissions of LFG	-
	1		even after the project activity has been	
urio	I		implemented.	
ena	LFG Flare	CO_2	No. CH_4 emissions from the decay of biomass	NA
\mathbf{Sc}			are not counted as anthropogenic GHG	
ect	1		emissions	
oje	Fauinment	Various	No These are not considered to be	ΝΔ
$\mathbf{P_1}$	agnetruction	various	"cignificant" in relation to overall amissions	
	construction	x 7 ·	significant in relation to overall emissions	NT A
	On-site	Various	No. On-site transportation of MSW would	NA
	transportation		occur even in the absence of the project	
			activity.	
_	Landfill	Methane	Yes. Methane emissions from the anaerobic	104,178 tonnes of
uric	1		decomposition of MSW are considered to be	CO ₂ e
ens	1		additional. In the baseline scenario only 20%	
Sci	1		of LFG is captured and flared.	
Je	1		1	
eliı	1			
ase	1			
В	l I			
		1		

Figure E.1: Emission Sources

E.1. Estimate of GHG emissions by sources:

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project. To calculate emission reduction estimates baseline emissions only are estimated and then multiplied by the flaring inefficiencies and collection rates of the installed equipment.

E.2. Estimated <u>leakage</u>:

Only the construction of the LFG collection and utilization system will lead to some GHG emissions that would not have occurred in the absence of the project. These emissions are, however, insignificant. No increased in emissions are discernable other than those targeted and directly monitored by the project. Moreover, because the project employs direct monitoring of emission reductions, indirect emissions will not distort their calculation.

E.3. The sum of E.1 and E.2 representing the <u>project activity</u> emissions:

Project activity emissions are actually zero, as the project activity does not cause any GHG emissions by itself. Due to equipment inefficiencies it is estimated that there will still be a fraction of LFG released to the atmosphere. However, this is reflected in lower emissions reductions rather than in project activity emissions.

EXFCC

page 212

As the project aims to flare a large proportion of LFG produced, this percentage can be applied to the baseline emissions. In the case of the Igarassu landfill and as explained above, a collection and flaring efficiency of 75% has been estimated. This plus further adjustments are then applied to the baseline emissions calculated in Section E.4 to arrive at total emission reductions.

E.4. Estimated anthropogenic emissions by sources of greenhouse gases of the <u>baseline</u>:

General Assumptions								
Parameter	Value	Source						
Global Warming Potential (GWP) of CH ₄	21	IPCC, 2001						
Amount of methane flared in baseline (AF)	20% for safety reasons	Industry common practice						
MCF – Methane Correction Factor for landfill	1 for managed landfill	IPCC, 1996						
Density of methane	0.000656 tCH ₄ /m ³ CH ₄	Literature						
Methane generation rate (k)	0.1 year^{-1}	US EPA/SCS Engineers						
Potential methane generation capacity (L _o)	164 m ³ /tonne	US EPA/SCS Engineers						
Methane content of LFG	50%	IPCC, 1996						
Methane collection efficiency	75%	Supplier						
Insurance Adjustment Factor	20%	MaxAmbiental						

<u>Waste Projecti</u>	Waste Projections								
Year	Daily Waste Disposal Rate (tonnes/day)	Waste added in Year (tonnes/yr)	Cumulative Waste-in-Place at Start of Year (tonnes)						
1965	46	16,667	0						
1966	46	16,667	16,667						
1967	46	16,667	33,333						
1968	46	16,667	50,000						
1969	46	16,667	66,667						
1970	46	16,667	83,333						
1971	46	16,667	100,000						
1972	46	16,667	116,666						
1973	46	16,667	133,333						
1974	46	16,667	150,000						
1975	46	16,667	166,666						
1976	46	16,667	183,333						
1977	46	16,667	200,000						
1978	46	16,667	216,666						
1979	46	16,667	233,333						
1980	46	16,667	249,999						
1981	46	16,667	266,666						
1982	46	16,667	283,333						
1983	46	16,667	299,999						
1984	46	16,667	316,666						
1985	46	16,667	333,333						
1986	46	16,667	349,999						

Executive Board

page 213

1987	46	16,667	366,666
1988	46	16,667	383,332
1989	46	16,667	399,999
1990	46	16,667	416,666
1991	46	16,667	433,332
1992	46	16,667	449,999
1993	46	16,667	466,666
1994	46	16,667	483,332
1995	46	16,667	499,999
1996	46	16,667	516,666
1997	46	16,667	533,332
1998	46	16,667	549,999
1999	46	16,667	566,665
2000	46	16,667	583,332
2001	46	16,667	599,999
2002	0	0	616,665

USEPA First Order Decay Model

The estimation of baseline emissions is principally carried out to determine approximate gas volumes and by deduction emissions reductions. The following model is NOT part of the monitoring methodology per se, but rather suited for the **ex ante calculation** of potential emission reductions.

An assessment of the landfill gas generation of the Carapicuíba Landfill was carried out using the USEPA's Landfill Air Emissions Estimation Model, which is consistent with the more complex methodology recommended by the Intergovernmental Panel on Climate Change (IPCC) for calculating methane emissions from landfills. The assumptions applied were those successfully used by the Brazilian NovaGerar project, whose two landfills operate under similar conditions as the Carapicuíba landfill.

Model Inputs

The US EPA first order exponential decay model equation from the US EPA manual 'Turning a Liability into an Asset: A Landfill Gas to Energy Handbook for Landfill Owners and Operators' (December 1994) is as follows:

$$LFG = 2 \times L_o \times R \times \left(e^{-kc} - e^{-kt}\right)$$

Where:

LFG = total landfill gas generated in current year (m3) L_0 = theoretical potential amount of landfill gas generated (m3/tonne) R = waste disposal rate (tonnes/year) t = time since landfill opened (years) c = time since landfill closed (years)k = rate of landfill gas generation (1/year)

The site-specific inputs used were:

EXFCO

Waste disposal rate (R):

The Carapicuíba landfill received a total of approximately **600,000 tonnes of MSW between 1965 and 2001**⁶⁹ when the facility was finally closed. These data forms the foundation of the gas volume projection. This implies that the gas volume projection will vary accordingly. Therefore, even though gas volumes may fluctuate over a period of time because of varying disposal rates, the ultimate total volume of gas projected for the site will remain constant. The values used for R are shown in the waste projections table above.

Gas Generation Rate (k):

The gas generation rate for this site was determined based on specific ranges given for Brazilian landfills. The gas generation rate is influenced by the temperature, humidity and composition of the waste. A figure of **0.1** was used as recommended by SCS Engineers in a presentation on behalf of the US EPA in Sao Paulo, Brazil (Part 5: Evaluating Landfill Gas Potential, June 26 2001, Training Workshop for the US EPA Landfill Methane Outreach Program, Sao Paulo Brazil).

Theoretical Yield (Lo):

Another input into the computer model is theoretical maximum yield i.e. the total amount of landfill gas that one metric tonne of waste is expected to generate over its lifetime (cubic meters per tonne of MSW). Lo is a variable dependent on the type of waste deposited and its organic content. Again estimates recommended by SCS Engineers in a presentation on behalf of the US EPA in Sao Paulo, Brazil (Part 5: Evaluating Landfill Gas Potential, June 26 2001, Training Workshop for the US EPA Landfill Methane Outreach Program, Sao Paulo Brazil) were used, and the value chosen was **164 m3/tonne**.

Time since landfill opened (t): These values varied depending on which site was being investigated. In the case of the Carapicuíba landfill the opening year was **1965**. Therefore the value used for t changed depending on which year landfill gas generation figures were being developed for.

Time since landfill closed (c): The landfill shut in **2001**.

The USEPA model was then applied to the specific case of the CTRPE landfill and using the parameters detailed above gas volumes were estimated. The results are in the following table.

Project Emissions for 1 st Crediting Period									
Year	Methane Production (tCH4/yr)	Baseline CO2e Emissions (tCO ₂ e/yr)	CO ₂ e Emissions after project activity (tCO ₂ e/yr)	Net emissions reductions (tCO2e/yr)					
2006	1,172	19,693	19,693	0					
2007	1,061	17,819	5,568	9,604					
2008	960	16,123	5,039	8,690					
2009	868	14,589	4,559	7,863					
2010	786	13,201	4,125	7,115					
2011	711	11,944	3,733	6,438					
2012	643	10,808	3,377	5,825					
Total	6,201	104,178	46,095	45,537					

5. Difference between E.4 and E.3 representing the emission reductions of the <u>project</u> <u>activity</u>:

⁶⁹ The total volume used in the LFG estimation is **616,665 tonnes** by the end of 2001. This number was used, as there is uncertainty in what month the landfill opened and closed.

UNFOCO

After to accounting for registration fees and a 20% insurance factor, total emission reductions amount to $45,537 \text{ tCO}_{2}e$ over the first 7-year crediting period. For a summary of estimated results please see the table in E.6 below.

E.6. Table providing values obtained when applying formulae above:				
Year	Estimation of baseline emissions (tonnes of CO ₂ e)	Estimation of project activity emissions (tonnes of CO ₂ e)	Estimation of gross emission reductions (tonnes of CO ₂ e)	Estimation of net emission reductions (tonnes of CO ₂ e)
2006	19,693	19,693	0	0
2007	17,819	5,568	12,251	9,604
2008	16,123	5,039	11,085	8,690
2009	14,589	4,559	10,030	7,863
2010	13,201	4,125	9,075	7,115
2011	11,944	3,733	8,212	6,438
2012	10,808	3,377	7,430	5,825
Total (tonnes of CO ₂ e)	104,178	46,095	58,083	45,537

SECTION F. Environmental impacts

F.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

This section needs to be completed with section that the project sponsor has yet to provide.

F.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>: >>

SECTION G. <u>Stakeholders'</u> comments

As with any CDM project activity PDD, this section will only be completed during the validation phase of the project cycle by the chosen Designated operational entity (DOE) and in cooperation with the relevant project participants. This section will reflect comments submitted pertaining to the <u>ACTUAL</u> project engineering plans.

G.1.	Brief description how comments by local stakeholders have been invited and compiled:
>>	

G.2.	Summary of the comments received:		
>>			
G3	Report on how due account was taken of any comments received.		

>>
page 216

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE **PROJECT ACTIVITY**

Organization:	MaxAmbiental – Project Developer
Street/P.O.Box:	Avenida Brigadeiro Faria Lima, 2894 cj. 44
Building:	
City:	São Paulo
State/Region:	SP
Postfix/ZIP:	01452 938
Country:	Brazil
Telephone:	+55 11 3709 3440
FAX:	+55 11 3709 3446
E-Mail:	
URL:	www.maxambiental.com.br
Represented by:	Paulo Braga
Title:	Director
Salutation:	
Last Name:	Braga
Middle Name:	
First Name:	Paulo
Department:	
Mobile:	+55 11 8271 3626
Direct FAX:	+55 11 3709 3446
Direct tel:	+55 11 3709 3440
Personal E-Mail:	Paulo@maxambiental.com.br

Organization:	Xenex do Brasil, Ltda. – Project Developer
Street/P.O.Box:	Rua Manuel da Nobrega 354, cj. 82
Building:	
City:	São Paulo, Paraiso
State/Region:	SP
Postfix/ZIP:	04001 001
Country:	Brazil
Telephone:	+55 11 3262 0854
FAX:	
E-Mail:	xenexbr@nethall.com.br
URL:	
Represented by:	Junichi Ishihara
Title:	Director President
Salutation:	
Last Name:	Ishihara
Middle Name:	
First Name:	Junichi
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	

page 217

Organization:	Banco Sumitomo Mitsui Brasileiro S.A Project Sponsor
Street/P.O.Box:	Avenida Paulista, 37 – 11th Floor
Building:	
City:	São Paulo
State/Region:	SP
Postfix/ZIP:	01311 902
Country:	Brazil
Telephone:	+55 11 3178 8129
FAX:	+55 11 3178 8190
E-Mail:	
URL:	www.smbcgroup.com.br
Represented by:	Hajime Uchida
Title:	Marketing Group – Japanese Corporate General Manager
Salutation:	
Last Name:	Uchida
Middle Name:	
First Name:	Hajime
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	Hajime uchida@smbcgroup.com.br

page 218

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

The project will not receive any public funding from Parties listed in Annex I of the UNFCCC.

page 219

ANNEX 3

BASELINE INFORMATION

Proj	ect	Casł	۱fl	ow	1
					_

Landfill/Project Name: Carapicuiba

	Unit	2006	2007	2008	2009	2010	2011	2012
		1st	2nd	3rd	4th	5th	6th	7th
Carbon Cashflow								
Total LFG emitted	m3/h	408	369	334	302	273	247	224
Carbon CF								
Total Adj. Net Emission Reductions	Tonnes CO2e/yr	0	9,604	8,690	7,863	7,115	6,438	5,825
Cost								
Annual Operation Cost		-12,552	-12,552	-12,552	-12,552	-12,552	-12,552	-12,552
Annual Mentenace Cost		-9,000	-9,000	-9,000	-9,000	-9,000	-9,000	-9,000
Validation & Verification Cost			-5,000	-5,000	-5,000	-5,000	-5,000	-5,000
Adaptation Fee/CER	US\$0.2		-1,921	-1,738	-1,573	-1,423	-1,288	-1,165
Electricity Generation Cost	US\$70.0	0	0	0	0	0	0	0
Depreciation		-35,246	-35,246	-35,246	-35,246	-35,246	-35,246	-35,246
Interest		-23,497	-21,715	-19,825	-17,822	-15,699	-13,448	-11,062
Total Cost		-80,295	-85,433	-83,361	-81,192	-78,920	-76,534	-74,025
Income								
Price of CER	US\$/tCO2	8.0	8.0	8.0	8.0	8.0	8.0	8.0
CER Sales	US\$8.0	0	76,836	69,524	62,908	56,921	51,505	46,603
Electricity Tariff	US\$/MWh	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Electricity Sales	US\$50.0	0	0	0	0	0	0	0
Total Income		0	76,836	69,524	62,908	56,921	51,505	46,603
Balance		-80,295	-8,597	-13,837	-18,285	-21,998	-25,029	-27,422
Income Tax		0	0	0	0	0	0	0
Current Income		-80,295	-8,597	-13,837	-18,285	-21,998	-25,029	-27,422
NPV(21years)	128,009							
IRR(21years)	#NUM!							

page 220

ANNEX 4

MONITORING PLAN

The monitoring plan for the Carapicuíba LFG Flaring project activity is based on the monitoring methodology of ACM0001. The following diagram is provided.

Please note that for this project activity there is no boiler or power plant but only a flare.

The principal variables that need to be calculated for monitoring purposes are as follows:

- 1. MD_{project, y} for every project year
- 2. $MD_{reg, y}$ for every project year

The input data required for this will be stored in the following spreadsheet and archived for at least two years after the end of the crediting period or the last issuance of CERs for this project activity whatever occurs later.

Monitoring Plan for Carapicuíba Landfill gas capture and flaring project

Year	Units	Measurement	2006
Project Year			1
Total amount of LFG flared	m3	Flow Meter	
Methane content of exhaust gas	m3 CH4/m3 ExGas	Gas analyzer	
Operation time of flare	hours	Flare	
Flare Combustion Efficiency	%	Calculated	
Methane content of landfill gas	m3 CH4/m3 LFG	Gas analyzer	
Temperature of LFG	Degree Celsius	Manifold	
Pressure of LFG	Pa	Manifold	
Density of methane	tonnes CH4/m3 CH4	Calculated	
Regulatory requirements relating to LFG projects			

page 222

Annex 5

Electricity Generating Option

Annex 5: Electricity Generation Potential – Carapicuíba Landfill

Electricity Generation		Carapicuíba	a					
	Unit	2006	2007	2008	2009	2010	2011	2012
		1st	2nd	3rd	4th	5th	6th	7th
Carbon Cashflow								
Total LFG emitted	m3/h	408	369	334	302	273	247	224
Carbon CF								
Total Adj. Net Emission Reductions	Tonnes CO2e/yr	0	9,604	8,690	7,863	7,115	6,438	5,825
Electricity Generation(MWh)		0	1,594	1,594	1,594	1,594	1,594	1,594
Cost								
Annual Operation Cost		-12,552	-12,552	-12,552	-12,552	-12,552	-12,552	-12,552
Annual Mentenace Cost		-9,000	-9,000	-9,000	-9,000	-9,000	-9,000	-9,000
Validation & Verification Cost			-5,000	-5,000	-5,000	-5,000	-5,000	-5,000
Adaptation Fee/CER	US\$0.2		-1,921	-1,738	-1,573	-1,423	-1,288	-1,165
Electricity Generation Cost	US\$70.0	0	-111,602	-111,602	-111,602	-111,602	-111,602	-111,602
Depreciation		-35,246	-35,246	-35,246	-35,246	-35,246	-35,246	-35,246
Interest		-23,497	-21,715	-19,825	-17,822	-15,699	-13,448	-11,062
Total Cost		-80,295	-197,036	-194,963	-192,795	-190,522	-188,136	-185,628
Income								
CER Sales	US\$8.0	0	76,836	69,524	62,908	56,921	51,505	46,603
Electricity Sales	US\$50.0	0	79,716	79,716	79,716	79,716	79,716	79,716
Total Income		0	156,552	149,240	142,624	136,637	131,221	126,319
Balance		-80,295	-40,484	-45,723	-50,171	-53,885	-56,915	-59,308
Income Tax		0	0	0	0	0	0	0
Current Income		-80,295	-40,484	-45,723	-50,171	-53,885	-56,915	-59,308
NPV(21years)	-150,146							
IRR(21years)	#DIV/0!							

Electricity Market Situation in Brazil

Other than financial return from the carbon market, the only potential revenue to the project derives from the use of gas to produce electricity. The feasibility of this project is, thus, dependent on factors related to energy sector. It is necessary to conduct a financial analysis to determine whether the project is an economically attractive course of action.

Historically, tariff levels in Brazil have been relatively low due to a centralized pricing structure fixed by the government. The government agency ANEEL (Electric Energy National Agency) controls the commercialisation and distribution of through pre-established contracts and prices. While small tariff increases have been observed in the last few years, they are insignificant and not enough to indicate that this scenario is going to change significantly. A free electricity market in Brazil is still in its infancy.

In addition to this electricity generation using landfill gas cannot rely on offsetting carbon income. Due to its enormous hydropower capacity Brazil's energy sector already has low carbon intensity and a correspondingly low carbon emission factor. There is also a lack of governmental pricing policies to support projects that replace fossil energy with new sources of clean energy.

The generation of electricity from landfill gas in Brazil carries several risks. There are clear managerial risks owing to the fact that few landfill operators have the requisite skills and expertise to negotiate long-term power purchase agreements. Moreover, there is considerable uncertainty attached to the production of landfill gas and hence to the reliability of electricity supply. Several external factors such as precipitation levels, waste composition and temperatures can severely impact gas production levels. Most of the required generation technology needs to be imported from international companies, which exposes the project to potential adverse changes in the exchange rate. Given these risks, electricity generation from landfill gas is seen as 'unproven' technology by local investors.

Carapicuíba Generation Potential and Financial Analysis

A financial analysis was undertaken using assumptions that are highly conservative from the point of view of gas production. It needs to be noted that the landfill gas generation model used, the US EPA First Order Decay Model, has an inherent error up to 50%. A value of 4.95 kWh/m3 was used for the energy content of landfill gas. This number presents an accepted average and was also used in the calculation of the energy potential of the NovaGerar CDM project. According to the estimates used, the Carapicuíba landfill will produce 18,905,635m³ of landfill gas between the start of the project in 2006 and the end of the first Kyoto Commitment Period in 2012. It is important to bear in mind that this number is purely an **estimate** and actual volumes could be considerably lower.

Taking into account a generator efficiency of $38\%^{70}$ (industry average for LFGTE generator sets from companies such as Caterpillar and Jenbacher), a methane collection efficiency of 75%, and insurance factor of 20%, a parasitic loss factor of 5% and 91% generator availability, it is estimated that between 2006 and 2012, approximately **18,446 MWh** of electricity will be produced by the Carapicuíba landfill.

Source: www.dti.gov.uk/.../nr47/html/landfill_gas.htm

The US EPA estimates that levelized capital and O&M costs per kWh of landfill gas derived electricity are about 7 cents or US\$70/MWh⁷¹. This is of course only an estimate, but to arrive at more accurate numbers it would be necessary to undertake a more detailed study. For the purpose of this assessment it was deemed to be sufficient to use a generally accepted factor. Given that LFGTE is already an established industry in the US, it is likely that costs in Brazil would be even higher as they would have to factor in importation costs as well as FOREX risk and additional expenses related to lack of experience. At the same time the price currently offered to small producer of electricity by the Brazilian regulatory authority (ANEEL) is only U\$58.4/MWh (as of November 2005 the tariff was fixed at R\$ 146.00 and assuming a long-term exchange rate of 2.50 R\$/US\$)⁷². Comparing the costs and revenue per MWh it becomes clear that at the current time it is not financially viable to undertake Landfill gas to Energy projects in Brazil.

In addition to this the CERs that could be earned from the displacement of fossil-derived electricity through the generation of carbon neutral LFG energy are not sufficient to offset the estimated losses. The South-Southeast-Midwest electricity grid has a generally accepted Carbon Emission Factor of 0.249 tCO2e/MWh⁷³, which is relatively low. Between 2006 and 2012 the Carapicuíba landfill project is hence estimated to generate a net amount of **4,593 tCO2e**. At a price of US\$10/CER, the electricity-related carbon component is not sufficient to offset the high generating costs/low electricity tariffs.

⁷⁰ http://www.ge-energy.com/prod_serv/products/recip_engines/en/downloads/type2_en.pdf

⁷¹ http://www.forester.net/mw_0401_retail.html

⁷² http://www.aneel.gov.br/

⁷³ This CEF has been approved by the Brazilian Designated National Authority

Therefore for the Carapicuíba landfill the NPV of the electricity and related carbon components over the first 7 years comes to **negative US\$2,053,279**. Thus the generation of electricity is currently not considered to be an option for the Carapicuíba CDM project.

<u>PDD</u> <u>(3)モジグアス市</u>

page 227

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 02 - in effect as of: 1 July 2004)

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a <u>baseline methodology</u>
- C. Duration of the project activity / Crediting period
- D. Application of a <u>monitoring methodology</u> and plan
- E. Estimation of GHG emissions by sources
- F. Environmental impacts
- G. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Monitoring plan

ATTENTION PLEASE READ

This is a DRAFT version of the PDD. The ownership of the carbon credits has not been satisfactorily proven to the carbon advisors. There is as yet no engineering project. All numbers pertaining to the engineering part of the PDD are based on very rough estimates and CANNOT be submitted to the validators. No stakeholder meeting has yet been planned or held. No environmental licences have been submitted to the carbon advisor to date.

This DRAFT CANNOT yet be submitted for validation.

page 228

SECTION A. General description of <u>project activity</u>

A.1 Title of the <u>project activity</u>:

Project Name: Landfill Gas Recovery and Flaring Project at Mogi Guaçu Landfill in São Paulo

Version: 2.3

Date: Monday, 14 February 2006

A.2. Description of the <u>project activity</u>:

The project partners are proposing a CDM project activity, which will result in reduced GHG emissions and contribute to local sustainable development in the Brazilian state of São Paulo. The project activity will involve the capture and flaring of methane, which is a major constituent of landfill gas (LFG). LFG capture and flaring is not mandated by Brazilian law nor is it a common practice to flare a large proportion of the produced gas. Customarily only a small fraction of LFG is flared to reduce risk of explosion. The Mogi Guaçu will therefore provide additional environmental benefits by flaring the majority of the gas produced.

The landfill in Mogi Guaçu was opened in **1985 and is still operating in 2005**. Since 1995 Empreiteira Pajoan Ltda has managed this landfill under a private concession. This is expected to continue operations for another 10 years until 2015. The site covers a total of $105,000 \text{ m}^2$ and already contains approximately $476,000^{74}$ tonnes of waste. The landfill receives about 83 tonnes (corresponding to 111.66 m^3) per day of municipal solid waste, which is collected by a local association of "catadores" or waste collectors, as well as waste from the commercial and health sectors. It is located in the municipality of Mogi Guaçu in the state of São Paulo. The landfill possesses a leachate management system, but has no impermeable liner. Daily cover is applied in a haphazard manner using clay. Leachate is collected and collected in a storage basin to be recycled at a later date.

The aim of this specific project activity is to install landfill gas collection and flaring equipment to reduce methane emissions to the atmosphere. At the present time electricity generation using captured landfill methane is not foreseen due to the unfavorable pricing regime currently prevailing in Brazil. However, all equipment used can be expanded to include electricity generation at a later stage to accommodate future changes in electricity tariffs. At present the ultimate rationale of the project is the combustion of methane to reduce anthropogenic greenhouse gas (GHG) emissions from the decomposition of organic waste in the landfill. These emissions reductions will be eligible for Certified Emissions Reductions (CERs) under the Kyoto Protocol's Clean Development Mechanism (CDM).

The project activity will have a series of positive social and environmental impacts, especially when compared to traditional Brazilian waste disposal sites. This is important in view of guidelines governing the CDM, which stipulate a contribution to sustainable development and local environmental protection. The Mogi Guaçu project will flare the majority of generated methane and thus eliminate the negative impact of landfill gas emissions. In addition this project provides additional jobs in the municipality and is a step in the right direction towards sustainable management of municipal waste. There will be, for example, proper control over leachate collection, which is necessary to ensure reliable gas collection and avoid the flooding of gas collection pipes with leachate. At a later stage, some electricity may be

⁷⁴ The total volume used in the LFG estimation is **476,400 tonnes** by the beginning of 2005.

UNECO

generated with the LFG, although the generated electricity will be used only for onsite usage. This has not been taken into account for the proposed CDM project activity.

Greenhouse gas emission reductions will result from the combustion of the recovered methane contained in the landfill gas. It is estimated that this project will generate **148,760 CERs** within the first 7-year crediting period (2006-2012).

There are several contributions to sustainable development.

Environmental benefits:

The local environment benefits from the highest European waste management standards that are applied to this site including:

• The project will contribute to the continued environmental improvements by providing the infrastructure to reduce greenhouse gas emissions.

Technology transfer:

Project participants:

A.3.

The project will be one of the first in Brazil to recover and flare landfill gas from a closed landfill operation. As such it will act as a showcase project for landfill owners and operators as well as other CDM project developers.

Please list project participants and Party(ies) involved and provide contact information in Annex 1. Information shall be in indicated using the following tabular format.					
Name of Party involved ((host) indicates a host Party)	Private and/or public entity(ies) project participants (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)			
Brazil (host)Prefecture of Mogi Guaçu; MaxAmbiental; Xenex do Brasil Ltda.No					
(*) In accordance with the CDM modalities and procedures, at the time of making the CDM-PDD public at the stage of validation, a Party involved may or may not have provided its approval. At the time of					

requesting registration, the approval by the Party(ies) involved is required.

The Mogi Guaçu landfill is owned by the Prefecture of Mogi Guaçu and is operated by Empreiteira Pajoan Ltda. The gas-flaring project is being developed by between MaxAmbiental, a Brazilian environmental finance company that specializes in greenhouse gas (GHG) mitigation activities, and Xenex do Brasil Ltda. Banco Sumitomo Mitsui Brasileiro SA is financing the baseline study and PDD as well as the project activity (For further details see Annex 1).

MaxAmbiental is an environmental finance company whose specialty lies in the preparation of carbon emissions reductions projects. Its staff has wide ranging experience in this area, including the successful registration of the first landfill gas CDM project, Nova Gerar.

A.4. Technical description of the <u>project activity</u>:

A.4.1. Location of the project activity:

page 230

UNFCCC

A.4.1.1.	Host Party(ies):

Brazil

Mogi Guaçu, São Paulo

A.4.1.3. City/Town/Community etc:

Municipality of Mogi Guaçu

A.4.1.4.	Detail of physical location, including information allowing the
unique identification of this project	<u>activity</u> (maximum one page):

The Municipality of Mogi Guaçu is situated on the banks of the river Mogi Guaçu, close to the major cities of the state of São Paulo and the state of Minas Gerais and covers and area of 885 km² of which 45.15 km² are urbanized. The population of the Municipality numbered 136.258 in 2004. Annual rainfall is estimated to 1,262.6mm. The Municipality lies at a distance of about 166km from the city of São Paulo.

page 231

UNFCCC

A.4.2. Category(ies) of project activity:

Sectoral scope: 13 - Waste handling and disposal

Project activity: Landfill gas capture and flaring project

A.4.3. Technology to be employed by the <u>project activity</u>:

The project will involve proven technology and hardware for the extraction and treatment of landfill gas.

Typical Schematic of Modern Landfill

page 232

CDM – Executive Board

Below is a brief summary of the equipment and technology proposed for this project:

The landfill gas collection system consists of the following components:

- Landfill cells lined with impermeable high-density polyethylene membrane to ensure minimal leakage of landfill gas from the cells.
- Vertical wells (perforated concrete pipes) to ensure connectivity of all layers. A high-density perforated pipe is installed within the center of the well, which is backfilled with gravel.
- Surface runoffs as well as percolate are collected and then channeled to wastewater treatment plant.
- Landfill gas extraction wells will also be drilled into the landfill once areas reach their final elevation and final cover has been applied. The vertical wells consist of a pipe perforated in its lower part, placed in a drilled borehole in the waste, backfilled with gravel and sealed at the surface. Both well types will be equipped with wellheads that enable monitoring of gas flow and quality. Also valves are provided to allow adjustment of the available vacuum at each well.
- In order to maximize the extraction capacity horizontal drains will also be installed in the waste mass. Preliminarily, the installation of a series of horizontal drains with a horizontal separation distance of 60 meters installed every 5 meters in waste lift height is envisioned. The horizontal drains will consist of perforated pipes surrounded gravel or equivalent drainage material. The drains will be interconnected to the vertical well system.
- The flaring equipment consists of an enclosed flare, 2 compressors to require the vacuum in the collection network, an online gas analyzer, and valves and tubes.
- A condensate extraction and storage system designed at strategic low points throughout the gas system.

A.4.4. Brief explanation of how the anthropogenic emissions of anthropogenic

page 233

greenhouse gas (GHGs) by sources are to be reduced by the proposed CDM <u>project activity</u>, including why the emission reductions would not occur in the absence of the proposed <u>project</u> <u>activity</u>, taking into account national and/or sectoral policies and circumstances:

The project activity intends to collect and flare the methane generated by the anaerobic decomposition of the organic component of the municipal solid waste (MSW) landfilled at the Mogi Guaçu landfill. The combustion of the methane produces carbon dioxide. Taking into account the respective Global Warming Potentials (GWP) of methane and CO_2 this combustion signifies a 21-fold reduction of GHG emissions.

The baseline scenario is defined as the most likely future scenario in the absence of the project activity. Based on the analysis of possible alternatives, the baseline scenario is the continued, uncontrolled release of landfill gas into the atmosphere.

The results of the financial analysis demonstrate that the project activity is not the most attractive course of action economically speaking and therefore this kind of project is not part of the baseline scenario. Hence the Mogi Guaçu Project is considered to be additional.

A.4.4.1. Estimated amount of emission reductions over the chosen crediting period:

YEAR	ESTIMATED ANNUAL EMISSION REDUCTIONS IN TCO ₂ E
2006	0
2007	23,540
2008	24,109
2009	24,623
2010	25,088
2011	25,509
2012	25,890
Total emission reductions 7 years (tCO2e)	148,760
Renewable Crediting Period	$3 \times 7 \text{ years} = 21 \text{ years}$
Mean annual emission reductions (t CO2e)	21,251

The combustion of the methane generated by the Mogi Guaçu landfill during the chosen crediting period reduces anthropogenic GHG emissions by:

148,760 tonnes of CO₂e between 2006-2012 (first 7 year crediting period)

A.4.5. Public funding of the project activity:

There is no Official Development Assistance used in this project activity.

SECTION B. Application of a baseline methodology

B.1. Title and reference of the <u>approved baseline methodology</u> applied to the <u>project activity</u>:

ACM0001: Consolidated Methodology for Landfill Gas Project Activities

B.1.1. Justification of the choice of the methodology and why it is applicable to the project activity:

This consolidated methodology was developed specifically for landfill gas capture and flaring. The Mogi Guaçu project is similar to the Nova Gerar project, which served as one of the examples included in the consolidated methodology ACM0001.

B.2. Description of how the methodology is applied in the context of the <u>project activity</u>:

The project activity will flare a greater proportion of the landfill gas generated by the decomposition of organic waste in the Mogi Guaçu landfill, than would have occurred in the absence of the project activity. In the baseline scenario (i.e. the absence of the project) only 20% of all gas generated are customarily flared for safety reasons. The project activity leads to higher collection and flaring efficiency through the installation of modern LFG collection and flaring equipment. Therefore the project activity will reduce total GHG emissions below the GHG emissions of the baseline scenario.

Baseline emissions are calculated using a first order decay model proposed by the US Environmental Protection Agency as recommended in the 1996 IPCC Guidelines. Using this model the methane emissions that would have been released to the atmosphere in the absence of the project activity are calculated. A fraction of those emissions need to be discounted to take account of a minimum amount of flaring that does customarily occur for safety reasons. In the case of Brazil this is usually less than 20%. Hence the use of 20% for baseline flaring is considered to be conservative.

For the determination of the baseline scenario a number of financial and market data had to be used. The various sources are listed in the table below.

Key data for determining baseline scenario	Data Unit	Data Source		
Project activity and plausible		Project Participants (PP),		
alternatives to it	-	Industry data		
National and local rules and regulations and policies	-	PP, Government		
Baseline IRR	%	Calculated		
Project IRR without Carbon	%	Calculated		
Threshold for investment (IRR/NPV/payback period)	%, etc.	PP, Industry		
Equipment costs	Brazilian Reais (R\$)	Suppliers, PP		
Operating costs	R\$	PP		
Revenue from operations	R\$	PP		
Market data (inflation, interest, tax, discount rate, etc.)	%	Relevant indices		
Landfill gas generation	$1/vm m^3/toppo$	Us EPA, Brazil specific data		
parameters		(SCS Engineers)		
Methane collection parameters	%	IPCC, PP empirical data		

page 235

Global Warming Potentials	-	IPCC
Proportion of methane flared in baseline	%	Industry Data

B.3. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM <u>project activity</u>:

The project activity will flare a greater proportion of the landfill gas generated by the decomposition of organic waste in the Mogi Guaçu landfill, than would have occurred in the absence of the project activity. In the baseline scenario (i.e. the absence of the project) only 20% of all gas generated are flared for safety reasons. The project activity leads to higher collection and flaring efficiency through the installation of modern LFG collection and flaring equipment. Therefore the project activity will reduce total GHG emissions below the GHG emissions of the baseline scenario.

This description is divided into two parts:

- H) The baseline approach and accompanying formulae described in ACM0001 are directly employed to the project activity under discussion.
- I) The "Tool for the demonstration and assessment of additionality" is used to establish the additionality of the Mogi Guaçu LFG Capture and Flaring project activity.

A)

Applicability

This methodology is applicable to landfill gas capture project activities, where the baseline scenario is the partial or total atmospheric release of the gas and the project activities include situations such as:

a) The captured gas is flared; or

b) The captured gas is used to produce energy (e.g. electricity/thermal energy), but no emission reductions are claimed for displacing or avoiding energy from other sources1; or

c) The captured gas is used to produce energy (e.g. electricity/thermal energy), and emission reductions are claimed for displacing or avoiding energy generation from other sources. In this case a baseline methodology for electricity and/or thermal energy displaced shall be provided or an approved one used, including the ACM0002 "Consolidated Methodology for Grid-Connected Power Generation from Renewable". If capacity of electricity generated is less than 15MW, and/or thermal energy displaced is less than 54 TJ (15GWh), small-scale methodologies can be used.

This baseline methodology shall be used in conjunction with the approved monitoring methodology ACM0001 ("Consolidated monitoring methodology for landfill gas project activities").

Comments:

As almost all of the LFG produced in the Mogi Guaçu landfill will be <u>captured</u> and <u>flared</u>, the project activity meets situation "a)" described above; hence this methodology is applicable to the project activity.

page 236

UNECC

Emission Reduction

The greenhouse gas emission reduction achieved by the project activity during a given year "y" (ER_y) is the difference between the amount of methane actually destroyed/combusted during the year $(MD_{project,y})$ and the amount of methane that would have been destroyed/combusted during the year in the absence of the project activity $(MD_{reg,y})$ times the approved Global Warming Potential value for methane (GWP_{CH4}) , plus the net quantity of electricity displaced during the year (EG_y) multiplied by the CO₂ emissions intensity of the electricity displaced ($CEF_{electricity,y}$) plus the quantity of thermal energy displaced during the year (ET_y) multiplied by the CO₂ emissions intensity of the thermal energy displaced ($CEF_{thermal,y}$). Electricity and thermal energy emission reductions apply to case (c) only.

 $ER_{y} = (MD_{project, y} - MD_{reg, y}) \times GWP_{CH4} + EG_{y} \times CEF_{electricity, y} + ET_{y} \times CEF_{thermal, y}$ (1)

ERy is measured in tonnes of CO2 equivalents (tCO2e). $MD_{project,y}$ and $MD_{reg,y}$ are measured in tonnes of methane (tCH₄). The approved Global Warming Potential value for methane (GWP_{CH4}) for the first commitment period is 21 tCO₂e/tCH₄. EG_y is measured in megawatt hours (MWh). The CO2 emissions intensity, CEF_{electricity,y}, is measured in tonnes of CO₂ equivalents per megawatt hour (t CO₂e/MWh) and ET_y is measured in TeraJoules (TJ) and CEF_{thermal,y} is measured in terms of tonnes of CO₂ equivalents per TJ (t CO₂e/TJ).

In the case where the $MD_{reg,y}$ is given/defined as a quantity that quantity will be used.

In cases where regulatory or contractual requirements do not specify $MD_{reg,y}$ an "Adjustment Factor" (AF) shall be used and justified, taking into account the project context.

$$MD_{reg,y} = MD_{project,y} \times AF$$
 (2)

The following examples provide guidance on how to estimate AF:

- In cases where a specific system for collection and destruction of methane is mandated by regulatory or contractual requirements, the ratio of the destruction efficiency of that system to the destruction efficiency of the system used in the project activity shall be used.

- In cases where a specific percentage of the "generated" amount of methane to be collected and destroyed is specified in the contract or mandated by regulations, this percentage divided by an assumed efficiency for the collection and destruction system used in the project activity shall be used.

Comments:

In the case of this project activity there are neither regulatory nor contractual requirements for the combustion of the methane produced in the baseline scenario. The "Adjustment Factor" used for $MD_{reg, y}$ is 20%, a value that conservatively estimates the amount of gas that would be flared in the absence of the project activity to avoid explosion risks.

Also, this particular project does not intend to generate electricity or thermal energy from the captured LFG. Therefore, greenhouse gas emission reductions related to this source are not to be considered in the calculation of ER_{y} . Therefore Formula (1) can be re-written as:

$$ER_{y} = (MD_{project, y} - MD_{reg, y}) \times GWP_{CH 4}$$

The approved Global Warming Potential (GWP) of Methane for the first commitment period is 21 t CO_2 e/tCH₄.

page 237

UNFCCO

Project proponents should provide an ex ante estimate of emissions reductions, by projecting the future GHG emissions of the landfill. In doing so, verifiable methods should be used. Ex ante emission estimates may have an influence on $MD_{reg,y}$. $MD_{project,y}$ will be determined ex post by metering the actual quantity of methane captured and destroyed once the project activity is operational.

The methane destroyed by the project activity $(MD_{project,y})$ during a year is determined by monitoring the quantity of methane actually flared and gas used to generate electricity and/or produce thermal energy, if applicable.

 $MD_{project,y} = MD_{flared,y} + MD_{electricity,y} + MD_{thermal,y}$ (3)

$$MD_{flared,y} = LFG_{flared,y} \times w_{ch4} \times D_{ch4} \times FE \quad (4)$$

Where $MD_{flared,y}$ is the quantity of methane destroyed by flaring, $LFG_{flared,y}$ is the quantity of landfill gas flared during the year measured in cubic meters (m^3) , wCH4,y is the average methane fraction of the landfill gas as measured during the year and expressed as a fraction (in $m^3 CH_4 / m^3 LFG$), FE is the flare efficiency (the fraction of the methane destroyed) and D_{CH4} is the methane density expressed in tonnes of methane per cubic meter of methane (tCH₄/m³CH₄).

 $MD_{electricity, y} = LFG_{electricity, y} \times W_{ch4} \times D_{ch4}$ (5)

Where $MD_{electricity,y}$ is the quantity of methane destroyed by generation of electricity and $LFG_{electricity,y}$ is the quantity of landfill gas fed into electricity generator.

$$MD_{thermal,y} = LFG_{thermal,y} \times W_{ch4} \times D_{ch4}$$
 (6)

Where $MD_{thermal,y}$ is the quantity of methane destroyed for the generation of thermal energy and $LFG_{thermal,y}$ is the quantity of landfill gas fed into the boiler.

Comments:

Again, since no electricity or thermal energy will be generated, the emission reductions will be equivalent to the amount of methane flared only, thus:

 $MD_{project,y} = MD_{flared,y}$

Consequently equations (5) and (6) will not be used for this specific project activity.

For the purpose of estimating baseline emissions and overall emission reductions of the project activity the USEPA's First Order Decay Model has been used. A detailed description and formulae used are provided in Section D.2.1.4.

According to ACM0001 at standard temperature and pressure (0 degree Celsius and 1,013 bar) the density of methane is $0.000656 \text{ tCH}_4/\text{m}^3\text{CH}_4$.

Project Boundary

The project boundary is the site of the project activity where the gas is captured and destroyed/used.

page 238

Possible CO_2 emissions resulting from combustion of fuels other than the methane recovered should be accounted as project emissions. Such emissions may include fuel combustion due to pumping and collection of landfill gas or fuel combustion for transport of generated heat to the consumer locations. In addition, electricity required for the operation of the project activity, including transport of heat, should be accounted and monitored. Where the project activity involves electricity generation, only the net quantity of electricity fed into the grid should be used in equation (1) above to account for emission reductions due to displacement of electricity in other power plants. Where the project activity does not involve electricity generation, project participants should account for CO_2 emissions by multiplying the quantity of electricity required with the CO_2 emissions intensity of the electricity displaced ($CEF_{electricity,y}$).

Comments:

For more detailed information concerning the project boundary, please refer to Section B.4.

Baseline

The baseline is the atmospheric release of the gas and the baseline methodology considers that some of the methane generated by the landfill may be captured and destroyed to comply with regulations or contractual requirements, or to address safety and odor concerns.

Comments:

As mentioned above, flaring of landfill gas is not a common or required practice in Brazil. However, it is common to flare a small fraction (usually around 20%) of the produced gas to reduce the risk of explosion. Hence this fraction is deducted from the estimated total emissions of LFG from the landfill.

Leakage

No leakage effects need to be accounted under this methodology.

B)

Additionality

The additionality of the project activity shall be demonstrated and assessed using the latest version of the "Tool for the demonstration and assessment of additionality" agreed by the CDM Executive Board, which is available on the UNFCCC CDM web site.

Using the "Tool for demonstration and assessment of additionality":

Step 0: Preliminary screening based on the starting date of the project activity
Step 1: Identification of alternatives to the project activity consistent with the current laws and regulations
Step 2: Investment analysis
Step 4: Common practice analysis
Step 5: Impact of CDM registration

page 239

Step 1:

<u>Sub-step 1a. Define alternatives to the project activity:</u> There are 3 possible baseline scenarios for the MOGI GUAÇU landfill:

1) The landfill operator adheres to the business as usual practice of not collecting and flaring landfill gas from its waste operations or flaring just a small fraction of the gas, for safety reasons. This is in fact the approach taken by most waste management operations in Brazil. In this case, no power is generated at the site and the Brazilian power system remains unaffected.

2) The landfill operator invests in LFG collection and flaring but not in power generation (the proposed project activity). The Brazilian power system remains unaffected.

3) The landfill operator invests in power generation from LFG. The operation marginally reduces the generation of power from other grid-connected sources and hence avoids carbon emissions.

Sub-step 1b. Enforcement of applicable laws and regulations:

Current Brazilian legislation does not require that landfills collect and dispose of landfill gases, and there are very few landfills in operation in Brazil that have been designed to collect, flare or utilize the full amount of gas generated. Most of these, like the NovaGerar landfills, were designed and built in the last two years specifically as CDM projects. When LFG collection and flaring does happen, this occurs mainly on a voluntary basis to diminish explosion risk. Usually only a low proportion of methane is collected due to the utilization of unsophisticated collection systems and the occasional flooding of pipes with leachate.

The implementation of environmental protection legislation in Brazil has a relatively long lead-time, and the Ministry of the Environment has no immediate plans to introduce legislation requiring the collection and flaring of landfill gas from landfill sites. Historically in Brazil there also tends to be a gulf between stated regulations and practice with regards to the implementation of environmental protection legislation.

<u>Step 2:</u>

Sub-step 2a. Determine appropriate analysis method:

This project activity will not generate any financial or economic benefits other than CDM related income. Other than financial return from the carbon market, the only potential revenue to the project could come from the use of gas to produce electricity (Alternative 3 above). It is necessary to conduct a financial analysis to determine whether the project activity is an economically attractive course of action.

Historically, tariff levels have been relatively low due to a centralised pricing structure fixed by the government. The commercialisation and distribution of electricity is controlled by the government, through ANEEL (Electric Energy National Agency), by pre-establishing the contracts and the price range. While small tariff increases can be observed in the last few years, they are insignificant and not sufficient to indicate that this scenario is going to change now. The free electricity market is still very incipient in Brazil. These low tariffs make electricity generation from LFG economically unattractive at present.

Brazil's energy sector is already relatively clean and there is lack of governmental pricing policies to

page 240

support and favour projects for the replacement of some non-renewable energy with new sources of clean electricity.

In parallel to the risks related to the sale of electricity, the exact amounts of landfill gas and the performance of the plants also concerns landfill operators. Given that the production of methane in the landfills can vary greatly and currently there isn't a single landfill site in Brazil generating electricity, this is seen as 'unproven' technology by local investors.

A sensitivity analysis was undertaken using assumptions that are highly conservative from the point of view of analysing environmental additionality, i.e. the best-case scenario IRR was calculated. It was assumed that the average daily waste placement rate at the Mogi Guaçu Landfill would peak around 83 tonnes. The volumes of landfill gas to be generated from the site were estimated using the US EPA First Order Decay Model. It was further assumed that the project has unlimited access to capital to invest in all the equipment necessary to use the increased amount of gas produced. The IRR (without carbon) is negative and still exposed to a series of risks (project, country, currency, etc.). These results show that even with the best possible conditions, which are obviously quite unrealistic, the project is still not an economically attractive course of action.

Sub-step 2b. Apply simple cost analysis N/a

Step 4:

According to the National GHG Emissions Inventory conducted by CETESB in 1994, 84% of Brazil's methane emissions came from the deposition of waste in uncontrolled rubbish dumps. This source is still responsible for a large part of the methane emitted since not much has changed in the business as usual scenario in the country. Besides, the amount of waste produced in Brazil has been increasing and, as estimated in 2000, Brazilians were already producing an average of 0.52 kg of waste per person everyday.⁷⁵

Nowadays 59% of the municipalities in Brazil still dispose of their waste in 'rubbish dumps' ("lixões") with no management, gas collection, water treatment, or regulation by environmental authorities whatsoever. Among the other 30% that use landfills, only 13% invest in sanitary landfills with sophisticated leachate collection and treatment systems.

Although, until the present moment there are no regulatory requirements for flaring landfill gas, a number of landfills are collecting a small amount of LFG for safety reasons. To maintain the calculations' conservatism and to assure the environmental integrity of the project, all emission reductions arising from the Mogi Guaçu site will be discounted by 20% in the project. This amount, as argued before, more than sufficiently covers the volume of gas that would be flared to follow the business-as usual scenario found in the landfills considered in this analysis.

Since there are no legislation requiring gas flaring in Brazilian landfills, besides the flaring of a small fraction for security (less than 20%), there is no reason to believe that an LFG system for the collection and flaring of all gas produced would be installed now, when the landfill is being built. The installation of even a rudimentary LFG collection system with passive venting or flaring would go beyond what is required by law and involve considerable expenses for the landfill operator without any offsetting

⁷⁵ CETESB and IGBE Census

page 241

revenues.

Given the regulatory situation in Brazil and the location and conditions of the landfill, the realization of alternative 2 is not required and would also not be an economically attractive course of action for the landfill owner and/or operator. It is therefore not considered a plausible alternative to the baseline scenario. Alternative 3 was also proven not to be financially feasible at Brazil's present electricity tariff levels. Consequently the only remaining plausible option is Alternative 1 (i.e. Business- as-usual: the construction of a landfill without any LFG treatment).

Step 5: Impact of CDM Registration

As can be seen form the attached financial analysis, successful CDM registration adds an additional revenue stream (in fact the only revenue stream) to the project activity. At a price of **US\$8 per CER** and a discount rate of 6%, the project has a net present value of **US\$579,544 and an IRR of 10.1% for the first 7 years**. When compared to the financial analysis without carbon financing, it becomes clear that the project activity would not be undertaken in the absence of CDM registration.

Baseline development in time and description of baseline scenario:

It has been shown that the BAU baseline holds at the time of preparing the project. The main determinants of this baseline are:

- Landfill regulations applicable to the site
- The economics of landfill gas utilization

It is possible that future regulatory requirements for landfills in Brazil will necessitate a higher level of LFG collection in the baseline scenario. If this occurs, the future baseline scenario will include compliance with such regulations.

It is also possible that the economics of LFG utilization for power generation may change at some time in the future. If such changes lead to a sufficient increase in the profitability of LFG utilization the proposed project could well be implemented without the help of carbon finance. If this occurs, the future baseline scenario will include an LFG to power project.

The baseline scenario for the proposed project can thus be described as follows:

No collection and treatment of LFG occurs at the Mogi Guaçu landfill site and this allows the uncontrolled release of most of the LFG to the atmosphere until some future time when the collection and treatment of LFG will either be required by law or becomes an economically attractive course of action. The monitoring plan for the project will re-evaluate the baseline scenario, report any changes during the crediting period and determine the new baseline scenario.

This baseline scenario is the basis for the determination of the project's ERs as per the monitoring plans instructions.

The Mogi Guaçu project baseline assumptions will be revisited every 7 years to ensure that the assumptions made in the baseline scenario still hold true, or they will be revised accordingly. In addition, the introduction of Brazilian legislation regarding the collection and flaring of landfill gas will be monitored **annually** as a part of the Monitoring Plan.

UNFCCO

CDM – Executive Board

page 242

B.4. Description of how the definition of the <u>project boundary</u> related to the <u>baseline</u> <u>methodology</u> selected is applied to the <u>project activity</u>:

The following flow diagram describes the project boundary and includes those GHG emissions, which are "under the control of" the project participants, "significant" and "reasonably attributable".

In the light of these attributes, the following emissions have not been taken into account:

- Emissions from the transport of the waste to the landfill site, as these would occur even in the absence of the proposed project activity.
- Emissions from the vehicles used to compact and cover the waste, as these would also occur in the absence of the project activity.

Figure B.4.1: I	Project Bo	oundary
-----------------	------------	---------

Emissions	Project Scenario	Baseline Scenario
Direct On-site	Emissions associated with the inefficiency of the LFG capture and flaring process. MaxAmbiental estimates that only about 75% of total LFG produced will be collected and then combusted to CO_2 . Hence 25% of the total gas production will be released as fugitive	Uncontrolled release of practically all LFG generated by the landfill.
	emissions.	
Direct Off-site	Transportation of equipment to project site -	None identified

page 243

UNFCCO

	excluded because deemed to be insignificant	
Indirect On-site	NA	NA
Indirect Off-site	Transportation of waste to landfill site -	Transportation of waste to
	excluded because would happen even in	landfill site - excluded because
	absence of project	would happen even in absence of
		project

Table B.4.2: System emissions

B.5. Details of <u>baseline</u> information, including the date of completion of the baseline study and the name of person (s)/entity (ies) determining the <u>baseline</u>:

The project is using ACM0001: Consolidated Methodology for Landfill Gas Project Activities

The baseline study was concluded in November 2005.

The entity determining the baseline and participating in the project, as the technical consultants are **MaxAmbiental** and **Xenex do Brasil Ltda** Brazil, listed in Annex 1 of this document.

SECTION C. Duration of the project activity / Crediting period

C.1 Duration of the <u>project activity</u>:

C.1.1. <u>Starting date of the project activity:</u>

The project start date has been set for the second quarter of 2006.

C.1.2. Expected operational lifetime of the project activity:

The landfill is scheduled to close in 2015. The actual project activity will have a renewable crediting period of 7 years. This period can be renewed twice.

C.2 Choice of the <u>crediting period</u> and related information:

The project activity will use a renewable crediting period as described below in the following section (C.2.1).

C.2.1. <u>Renewable crediting period</u>

C.2.1.1.

Starting date of the first crediting period:

The starting date is 1st January 2006

C.2.1.2.

Length of the first <u>crediting period</u>:

7 years duration per renewable period

page 244

UNFCC

	C.2.2.	<u>Fixed crediti</u>	d crediting period:						
		C.2.2.1.	Starting date:						
NA									
		C.2.2.2.	Length:						

NA

SECTION D. Application of a <u>monitoring methodology</u> and plan

D.1. Name and reference of <u>approved monitoring methodology</u> applied to the <u>project activity</u>:

ACM0001: "Consolidated monitoring methodology for landfill gas project activities"

D.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity</u>:

This monitoring methodology was specifically developed for landfill gas capture projects using baseline methodology ACM0001.

CDM – Executive Board

page 245

D.2. 1. Option 1: Monitoring of the emissions in the project scenario and the <u>baseline scenario</u>

D.2.1.1. Data to be collected in order to monitor emissions from the project activity, and how this data will be archived:									
ID number (Please use numbers to ease cross-referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e).	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment	

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project (see discussion under D.4 below). The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

D.2.1.2. Description of formulae used to estimate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not applicable, see D.2.1.1.

D.2.1.3. Relevant data necessary for determining the <u>baseline</u> of anthropogenic emissions by sources of GHGs within the project boundary and how such data will be collected and archived:									
ID number (Please use numbers to ease cross-referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e),	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment	

The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

CDM – Executive Board

page 246

D.2.1.4. Description of formulae used to estimate baseline emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not applicable. The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

D. 2.2. Option 2: Direct monitoring of emission reductions from the project activity (values should be consistent with those in section E).

This is the Option chosen for the monitoring methodology of the Mogi Guaçu landfill gas capture and flaring project. As stated in ACM0001: "The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform."

	D.2.2.1. Data to be collected in order to monitor emissions from the <u>project activity</u> , and how this data will be archived:									
ID number	Data variable	Source of data	Data	Measured	Recording	Proportion	How will the	Comment		
(Please use			unit	(m),	frequency	of data to	data be			
numbers to ease				calculated		be	archived?			
cross-referencing				(c),		monitored	(electronic/			
to table D.3)				estimated			paper)			
				(e),						
D2-1	Annual Waste landfilled	Truck balance	Tonnes	M	Arrival of	100%	Electronic	Measured on site		
					truck		(spreadsheet)			
D2-2	Flow of landfill gas to	Continuous	m^3	М	Continuous	100%	Electronic	Data will be aggregated		
	flares	Flow Meter					(spreadsheet)	monthly and yearly		
D2-3	<i>Flare efficiency</i>	Continuous	%	M &C	1)	N/a	Electronic	Data will be used to test		
	determined by 1)	methane			Continuously		(spreadsheet)	and, if necessary,		
	operating hours	analyser			2) Quarterly			correct the flare's		
	And							efficiency rating		
	2) Methane content in									
	exhaust gas									
D2-4	Methane fraction in	Continuous	%	M & C	Continuous	100%	Electronic	Data will be aggregated		
	LFG	methane					(spreadsheet)	monthly and yearly		
		analyser								

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 02

UNFCCC

CDM – Executive Board

page 247

D2-5	Gas pressure	Pressure gauge	Pa	М	Continuous	100%	Electronic (spreadsheet)	Data will be used to calculate methane density
D2-6	Gas temperature	Thermometer	Deg. Celsius	М	Continuous	100%	Electronic (spreadsheet)	Data will be used to calculate methane density
D2-7	Amount of methane flared	N/a	Tonnes of CH4	M & C	Daily	100%	Electronic (spreadsheet)	It can be measured or calculated with the following data: LFG flow to flare, methane fraction in LFG, LFG temperature and pressure, flare temperature, and flare working hours
D2-8	Amount of methane flaring required in baseline	N/a	Tonnes of CH ₄	С	Daily	100%	Electronic (spreadsheet)	20% of the amount of methane flared
D2-9	Regulatory requirements relating to landfill gas projects	Legislation	N/a	N/a	Annually	100%	Electronic (spreadsheet)	Required for any changes to the adjustment factor (ID 8)

D.2.2.2. Description of formulae used to calculate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.):

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project (see discussion under D.4 below). The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform.

The following formulae are used to calculate project emissions using the direct monitoring data measured and collected during the lifetime of the project:

CDM – Executive Board

page 248

$$MD_{project,y} = LFG_{flared,y} \times W_{ch4} \times D_{ch4} \times FE$$

Where:

 $LFG_{flared,y}$ = Flow of landfill gas (m³)

 W_{ch4} = Methane fraction in LFG (%)

 D_{ch4} = Temperature/(Pressure * R) (kg/m³)

FE = Flare efficiency (%)

D.2.3.	Treatment of <u>leakage</u> in the monitoring plan										
	D.2.3.1. If applicable, please describe the data and information that will be collected in order to monitor leakage effects of the										
<u>project activity</u>											
ID number	Data	Source of	Data	Measured	Recording	Proportion	How will the	Comment			
(Please use	variable	data	unit	(m),	frequency	of data to	data be				
numbers to ease				calculated (c)		be	archived?				
cross-referencing				or estimated		monitored	(electronic/				
to table D.3)				(e)			paper)				

Not applicable, there is no significant leakage in the project. See comment under D.2.3.2. below.

D.2.3.2. Description of formulae used to estimate leakage (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Only the construction of the LFG collection and utilization system will lead to some GHG emissions that would not have occurred in the absence of the project. These emissions are, however, insignificant. No increased in emissions are discernable other than those targeted and directly monitored by the project. Moreover, because the project employs direct monitoring of emission reductions, indirect emissions will not distort their calculation.

CDM – Executive Board

page 249

D.2.4. Description of formulae used to estimate emission reductions for the <u>project activity</u> (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

The following formulae are used to calculate emission reductions for the project activity using the direct monitoring data measured and collected during the lifetime of the project:

$$ER_{y} = \left(MD_{project,y} - MD_{reg,y}\right) \times GWP_{CH 4}$$

Where:

 $GWP_{CH 4}$ = Global Warming Potential of methane (IPCC, 1996)

$$MD_{project,y} = LFG_{flared,y} \times w_{ch4} \times D_{ch4} \times FE$$

Where:

 $MD_{project, y}$ = Amount of methane actually **flared/destroyed** during year y

$$LFG_{flared,v}$$
 = Flow of landfill gas (m³)

 W_{ch4} = Methane fraction in LFG (%)

 D_{ch4} = Temperature/(Pressure * R) (kg/m³)

FE = Flare efficiency (%)

 $MD_{reg,v}$ = Amount of methane flaring required in baseline (or **customarily** carried out for safety reasons)

CDM – Executive Board

page 250

Where:

 $MD_{reg,y} = MD_{project,y} \times AF$

AF = Adjustment factor based on the project context, i.e. what fraction of methane is customarily flared for safety considerations.

D.3. Quality control (QC) and quality assurance (QA) procedures are being undertaken for data monitored		
	1	
Data	Uncertainty level of data	Explain QA/QC procedures planned for these data, or why such procedures are not necessary.
(Indicate table and	(High/Medium/Low)	
ID number e.g.		
31.; 3.2.)		
D-1	Low	All the arriving waste at the landfill will be immediately weighed using a truck balance, with regular
		maintenance, and all the values recorded for future calculations
D2-2	Low	Flow meters will be subject to a regular maintenance and testing regime to ensure accuracy
D2-3	Low	Regular maintenance will ensure optimal operation of flares. Flare efficiency will be calibrated
		annually or more often, if significant deviation from previous efficiency rating is observed.
D2-4	Low	Gas analyzer will be subject to a regular maintenance and testing regime to ensure accuracy
D2-5	Low	Meters will be subject to a regular maintenance and testing regime to ensure accuracy.
D2-6	Low	Meters will be subject to a regular maintenance and testing regime to ensure accuracy.
D2-7	Low	This value is going to be calculated and recorded using the data that is directly collected and monitored
		at the site
D2-8	Low	This data will be determined from current industry practice.
D2-9	Low	This data will be determined from current legislation.

D.4 Please describe the operational and management structure that the project operator will implement in order to monitor emission reductions and any <u>leakage</u> effects, generated by the <u>project activity</u>

As described before, the flaring station, where the emission reductions will actually happen, will be equipped with a measurement chain, which will allow direct daily measurement of the real amount of methane flared.

page 251

UNECCO

The management structures implemented in the Mogi Guaçu project are as follows:

Daily Monitoring Records: On the larger more active sites site staff takes daily gas field and engine readings. These readings are then checked for any anomalies before being filed for future reference. The readings can be taken at weekly or other set periods depending on the activity and consistency of the gas field and engine operation. All engines have telemetry links back to a central computer, which continually monitors the performance of the engine detecting problems and highlighting them for attention.

Gas Field Monitoring Records: Taken on a weekly basis or at periods to be determined. The Site Technician walks the gas field taking readings at each gas well and recording these on a form. These readings are then checked for any anomalies before being filed for future reference. A gas analyser will be installed in order to enable continuous accurate measurement of the methane content on the landfill gas. These gas field inspections will also observe occurrence of any unintended releases of landfill gas. In case unintended releases are observed, appropriate corrective action will be taken immediately.

Routine Reminders for Site Technicians: All Site Technicians are issued with a reminder list to guide them through their daily, weekly and monthly routine. The Engineering Manager, Operations Manager and Training and Health & Safety Co-ordinator go through this routine during site visits to ensure all aspects of the role are being performed. In addition monitoring records, oil sample reports and meter readings that are due, are checked to ensure they have arrived. Again, the telemetry link records a lot of the data automatically.

Site Audits: The Engineering Manager, Operations Manager and Training and Health & Safety Co-ordinator make regular site visits. In addition to ensuring the site routines are being performed any additional training needs are assessed and an audit is taken of any outstanding task on site.

Outstanding Work Notice: Following the Site Audit a 'Plant Outstanding Works Notice' is issued to the Site Technician listing all the jobs that the management team consider necessary to be undertaken. This is checked on subsequent site audits to ensure these jobs have been carried out.

Calibration of measurement equipment: Calibration of measurement equipment will be done monthly in accordance with the requirements of the National Measurement Regulation Agency, INMETRO (Instituto Nacional de Metrologia).

Corrective Actions: Management structure measures include procedures to handle and correct non-conformities in the implementation of the Project or this Monitoring Plan. In case such non-conformities are observed:

- An analysis of the nonconformity and its causes will be carried out immediately by landfill staff
- Landfill management will make a decision, in consultation with MaxAmbiental when needed, on appropriate corrective actions to eliminate the non-conformity and its causes.
- Corrective actions are implemented and reported back to Landfill management.

It will be assured that the landfill gas management team will receive support and appropriate training on the implementation of this Monitoring Plan and of the project

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 02

UNFCCC

CDM – Executive Board

page 252

D.5 Name of person/entity determining the <u>monitoring methodology</u>:

Paulo Braga, MaxAmbiental and Xenex do Brasil, Ltda (see Annex 1)

page 253

SECTION E. Estimation of GHG emissions by sources

				r	
	Emission	Greenhouse	Validity	Quantity	of
	Source	Gas		Emissions	
				(2006-2012)	
nio	Landfill & LFG Flare	Methane	Yes. Due to collection and flaring inefficiencies some gas will not be destroyed. Hence there will still be emissions of LFG even after the project activity has been implemented.	86,248 tonne CO ₂ e	s of
ject Scena	LFG Flare	CO ₂	No. CH ₄ emissions from the decay of biomass are not counted as anthropogenic GHG emissions	NA	
Pro	Equipment construction	Various	No. These are not considered to be "significant" in relation to overall emissions	NA	
	On-site transportation	Various	No. On-site transportation of MSW would occur even in the absence of the project activity.	NA	
Baseline Scenario	Landfill	Methane	Yes. Methane emissions from the anaerobic decomposition of MSW are considered to be additional. In the baseline scenario only 20% of LFG is captured and flared.	318,501 tonno CO ₂ e	es of

Figure E.1: Emission Sources

E.1. Estimate of GHG emissions by sources:

Not applicable. Total project emissions are actually zero; there are neither project emissions nor leakage. The only discernable and significant difference between baseline and project emissions comes from the collection and destruction of methane contained in LFG, which is monitored and calculated directly. The only discernable yet insignificant (indirect) modification of emissions is associated with the physical construction of the project. To calculate emission reduction estimates baseline emissions only are estimated and then multiplied by the flaring inefficiencies and collection rates of the installed equipment.

E.2. Estimated <u>leakage</u>:

Only the construction of the LFG collection and utilization system will lead to some GHG emissions that would not have occurred in the absence of the project. These emissions are, however, insignificant. No increased in emissions are discernable other than those targeted and directly monitored by the project. Moreover, because the project employs direct monitoring of emission reductions, indirect emissions will not distort their calculation.

E.3. The sum of E.1 and E.2 representing the <u>project activity</u> emissions:

Project activity emissions are actually zero, as the project activity does not cause any GHG emissions by itself. Due to equipment inefficiencies it is estimated that there will still be a fraction of LFG released to the atmosphere. However, this is reflected in lower emissions reductions rather than in project activity emissions.

UNFOCO

As the project aims to flare a large proportion of LFG produced, this percentage can be applied to the baseline emissions. In the case of the Mogi Guaçu landfill and as explained above, a collection and flaring efficiency of 75% has been estimated. This plus further adjustments are then applied to the baseline emissions calculated in Section E.4 to arrive at total emission reductions.

E.4. Estimated anthropogenic emissions by sources of greenhouse gases of the <u>baseline</u>:

General Assumptions							
Parameter	Value	Source					
Global Warming Potential (GWP) of CH ₄	21	IPCC, 2001					
Amount of methane flared in baseline (AF)	20% for safety reasons	Industry common practice					
MCF – Methane Correction Factor for landfill	1 for managed landfill	IPCC, 1996					
Density of methane	$0.000656 \text{ tCH}_4/\text{m}^3\text{CH}_4$	Literature					
Methane generation rate (k)	0.1 year^{-1}	US EPA/SCS Engineers					
Potential methane generation capacity (L _o)	164 m ³ /tonne	US EPA/SCS Engineers					
Methane content of LFG	50%	IPCC, 1996					
Methane collection efficiency	75%	Supplier					
Insurance Adjustment Factor	20%	MaxAmbiental					

Waste Projections							
Year	Daily Waste Disposal Rate (tonnes/day)	Waste added in Year (tonnes/yr)	Cumulative Waste-in-Place (tonnes)				
1985	44	16,200	0				
1986	44	16,200	16,200				
1987	44	16,200	32,400				
1988	44	16,200	48,600				
1989	44	16,200	64,800				
1990	61	22,320	81,000				
1991	61	22,320	103,320				
1992	61	22,320	125,640				
1993	61	22,320	147,960				
1994	61	22,320	170,280				
1995	74	27,000	192,601				
1996	74	27,000	219,601				
1997	74	27,000	246,601				
1998	74	27,000	273,601				
1999	74	27,000	300,601				
2000	82	29,760	327,601				
2001	82	29,760	357,360				
2002	82	29,760	387,120				
2003	82	29,760	416,880				
2004	82	29,760	446,640				
2005	83	30,295	476,400				

page 255

EXFCO

USEPA First Order Decay Model

The estimation of baseline emissions is principally carried out to determine approximate gas volumes and by deduction emissions reductions. The following model is NOT part of the monitoring methodology per se, but rather suited for the **ex ante calculation** of potential emission reductions.

An assessment of the landfill gas generation of the Mogi Guaçu Landfill was carried out using the **USEPA's Landfill Air Emissions Estimation Model**, which is consistent with the more complex methodology recommended by the Intergovernmental Panel on Climate Change (IPCC) for calculating methane emissions from landfills. The assumptions applied were those successfully used by the Brazilian NovaGerar project, whose two landfills operate under similar conditions as the Mogi Guaçu landfill.

Model Inputs

The US EPA first order exponential decay model equation from the US EPA manual 'Turning a Liability into an Asset: A Landfill Gas to Energy Handbook for Landfill Owners and Operators' (December 1994) is as follows:

$$LFG = 2 \times L_o \times R \times (e^{-kc} - e^{-kt})$$

Where:

 $\label{eq:LFG} \begin{array}{l} \mbox{LFG} = \mbox{total landfill gas generated in current year (m3)} \\ \mbox{L}_o = \mbox{theoretical potential amount of landfill gas generated (m3/tonne)} \\ \mbox{R} = \mbox{waste disposal rate (tonnes/year)} \\ \mbox{t} = \mbox{time since landfill opened (years)} \\ \mbox{c} = \mbox{time since landfill closed (years)} \\ \mbox{k} = \mbox{rate of landfill gas generation (1/year)} \\ \mbox{MCF} - \mbox{Methane Correction Factor of 1 is used because Mogi Guaçu is a managed waste facility (1996 IPCC guidelines).} \end{array}$

The site-specific inputs used were:

Waste disposal rate (R):

The Mogi Guaçu landfill received a total of approximately $476,000^{76}$ tonnes of MSW between **1985 and 2005**. These data forms the foundation of the gas volume projection. This implies that the gas volume projection will vary accordingly. Therefore, even though gas volumes may fluctuate over a period of time because of varying disposal rates, the ultimate total volume of gas projected for the site will remain constant. The values used for R are shown in the waste projections table above.

Gas Generation Rate (k):

The gas generation rate for this site was determined based on specific ranges given for Brazilian landfills. The gas generation rate is influenced by the temperature, humidity and composition of the waste. A figure of **0.1** was used as recommended by SCS Engineers in a presentation on behalf of the US EPA in Sao Paulo, Brazil (Part 5: Evaluating Landfill Gas Potential, June 26 2001, Training Workshop for the US EPA Landfill Methane Outreach Program, Sao Paulo Brazil).

Theoretical Yield (Lo):

Another input into the computer model is theoretical maximum yield i.e. the total amount of landfill gas

⁷⁶ The total volume used in the LFG estimation is **476,400 tonnes** by the beginning of 2005.

page 256

EXFCC

that one metric tonne of waste is expected to generate over its lifetime (cubic meters per tonne of MSW). Lo is a variable dependent on the type of waste deposited and its organic content. Again estimates recommended by SCS Engineers in a presentation on behalf of the US EPA in Sao Paulo, Brazil (Part 5: Evaluating Landfill Gas Potential, June 26 2001, Training Workshop for the US EPA Landfill Methane Outreach Program, Sao Paulo Brazil) were used, and the value chosen was **164 m3/tonne**.

Time since landfill opened (t): These values varied depending on which site was being investigated. In the case of the Mogi Guaçu landfill the opening year was **1985**. Therefore the value used for t changed depending on which year landfill gas generation figures were being developed for.

Time since landfill closed (c): The landfill is scheduled to close in 2015.

The USEPA model was then applied to the specific case of the CTRPE landfill and using the parameters detailed above gas volumes were estimated. The results are in the following table.

	Projec	<u>t Emissions for 1st Cre</u>	editing Period	
Year	Methane Production (tCH4/yr)	Baseline CO2e Emissions (tCO ₂ e/yr)	CO ₂ e Emissions after project activity (tCO ₂ e/yr)	Net emissions reductions (tCO2e/yr)
2006	2,530	42,508	42,508	0
2007	2,600	43,674	13,648	23,540
2008	2,662	44,728	13,978	24,109
2009	2,719	45,683	14,276	24,623
2010	2,771	46,546	14,546	25,088
2011	2,817	47,327	14,790	25,509
2012	2,859	48,034	15,011	25,890
Total	18,958	318,501	128,756	148,760

E.5. Difference between E.4 and E.3 representing the emission reductions of the <u>project</u> <u>activity</u>:

After to accounting for registration fees and a 20% insurance factor, total emission reductions amount to **148,760 tCO₂e over the first 7-year crediting period**. For a summary of estimated results please see the table in E.6 below.

E.6. Table providing values obtained when applying formulae above:

Year	Estimation of baseline emissions (tonnes of CO ₂ e)	Estimation of project activity emissions (tonnes of CO ₂ e)	Estimation of gross emission reductions (tonnes of CO ₂ e)	Estimation of net emission reductions (tonnes of CO ₂ e)
2006	42,508	42,508	0	0
2007	43,674	13,648	30,026	23,540
2008	44,728	13,978	30,751	24,109
2009	45,683	14,276	31,407	24,623
2010	46,546	14,546	32,000	25,088
2011	47,327	14,790	32,537	25,509
2012	48,034	15,011	33,023	25,890
Total (tonnes of CO ₂ e)	318,501	128,756	189,745	148,760

page 257

UNFOCO

SECTION F. Environmental impacts

F.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

This section needs to be completed with section that the project sponsor has yet to provide.

F.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>: >>

SECTION G. <u>Stakeholders'</u> comments

As with any CDM project activity PDD, this section will only be completed during the validation phase of the project cycle by the chosen Designated operational entity (DOE) and in cooperation with the relevant project participants. This section will reflect comments submitted pertaining to the <u>ACTUAL</u> project engineering plans.

G.1.	Brief description how comments by local stakeholders have been invited and compiled:
>>	

G.2.	Summary of the comments received:
>>	

G.3. Report on how due account was taken of any comments received:

>>

page 258

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE **PROJECT ACTIVITY**

Organization:	MaxAmbiental
Street/P.O.Box:	Avenida Brigadeiro Faria Lima, 2894 cj. 44
Building:	
City:	São Paulo
State/Region:	SP
Postfix/ZIP:	01452 938
Country:	Brazil
Telephone:	+55 11 3709 3440
FAX:	+55 11 3709 3446
E-Mail:	
URL:	www.maxambiental.com.br
Represented by:	Paulo Braga
Title:	Director
Salutation:	
Last Name:	Braga
Middle Name:	
First Name:	Paulo
Department:	
Mobile:	+55 11 8271 3626
Direct FAX:	+55 11 3709 3446
Direct tel:	+55 11 3709 3440
Personal E-Mail:	Paulo@maxambiental.com.br

Organization:	Xenex do Brasil, Ltda. – Project Developer
Street/P.O.Box:	Rua Manuel da Nobrega 354, cj. 82
Building:	
City:	São Paulo, Paraiso
State/Region:	SP
Postfix/ZIP:	04001 001
Country:	Brazil
Telephone:	+55 11 3262 0854
FAX:	
E-Mail:	xenexbr@nethall.com.br
URL:	
Represented by:	Junichi Ishihara
Title:	Director President
Salutation:	
Last Name:	Ishihara
Middle Name:	
First Name:	Junichi
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	

page 259

Organization:	Banco Sumitomo Mitsui Brasileiro S.A Project Sponsor
Street/P.O.Box:	Avenida Paulista, 37 – 11th Floor
Building:	
City:	São Paulo
State/Region:	SP
Postfix/ZIP:	01311 902
Country:	Brazil
Telephone:	+55 11 3178 8129
FAX:	+55 11 3178 8190
E-Mail:	
URL:	www.smbcgroup.com.br
Represented by:	Hajime Uchida
Title:	Marketing Group – Japanese Corporate General Manager
Salutation:	
Last Name:	Uchida
Middle Name:	
First Name:	Hajime
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	Hajime uchida@smbcgroup.com.br

page 260

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

The project will not receive any public funding from Parties listed in Annex I of the UNFCCC.

page 261

ANNEX 3

BASELINE INFORMATION

Project Cashflow 1								
Landfill/Project Name:		Mogi Guaci	u					
	Unit	2006	2007	2008	2009	2010	2011	2012
	01m	1st	2nd	3rd	4th	5th	6th	7th
Carbon Cashflow								
Total LFG emitted	m3/h	881	905	927	946	964	980	995
Carbon CF								
Total Adj. Net Emission Reductions	Tonnes CO2e/yr	0	23,540	24,109	24,623	25,088	25,509	25,890
Cost								
Annual Operation Cost		-12,552	-12,552	-12,552	-12,552	-12,552	-12,552	-12,552
Annual Mentenace Cost		-12,000	-12,000	-12,000	-12,000	-12,000	-12,000	-12,000
Validation & Verification Cost			-5,000	-5,000	-5,000	-5,000	-5,000	-5,000
Adaptation Fee/CER	US\$0.2		-4,708	-4,822	-4,925	-5,018	-5,102	-5,178
Electricity Generation Cost	US\$70.0	0	0	0	0	0	0	0
Depreciation		-44,088	-44,088	-44,088	-44,088	-44,088	-44,088	-44,088
Interest		-29,392	-27,162	-24,799	-22,293	-19,637	-16,822	-13,838
Total Cost		-98,033	-105,511	-103,261	-100,858	-98,295	-95,564	-92,656
Income								
Price of CER	US\$/tCO2	8.0	8.0	8.0	8.0	8.0	8.0	8.0
CER Sales		0	188,322	192,869	196,983	200,706	204,075	207,123
Electricity Tariff	US\$/MWh	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Electricity Sales		0	0	0	0	0	0	0
Total Income		0	188,322	192,869	196,983	200,706	204,075	207,123
Balance		-98,033	82,811	89,608	96,126	102,411	108,511	114,467
Income Tax		0	-28,156	-30,467	-32,683	-34,820	-36,894	-38,919
Current Income		-98,033	54,655	59,142	63,443	67,592	71,617	75,548
	1 1 4 6 6 9 7							
INP V (2 I years)	1,140,037							
IKK(21)(ears)	19.5%							

page 262

UNFOCO

Annex 4

MONITORING PLAN

The monitoring plan for the Carapicuíba LFG Flaring project activity is based on the monitoring methodology of ACM0001. The following diagram is provided.

Please note that for this project activity there is no boiler or power plant but only a flare.

The principal variables that need to be calculated for monitoring purposes are as follows:

1. $MD_{project, y}$ for every project year

2. MD_{reg, y} for every project year

The input data required for this will be stored in the following spreadsheet and archived for at least two years after the end of the crediting period or the last issuance of CERs for this project activity whatever occurs later.

Monitoring Plan for Mogi Guaçu Landfill gas capture and flaring project

Year	Units	Measurement	2006
Project Year			1
Total amount of LFG flared	m3	Flow Meter	
Methane content of exhaust das	m3 CH4/m3 ExGas	Gas analyzer	
Operation time of flare	hours	Flare	
Flare Combustion Efficiency	%	Calculated	
Methane content of landfill gas	m3 CH4/m3 LFG	Gas analyzer	
Temperature of LFG	Degree Celsius	Manifold	
Pressure of LFG	Pa	Manifold	
Density of methane	tonnes CH4/m3 CH4	Calculated	
Regulatory requirements relating to LFG projects			

page 264

Annex 5

ELECTRICITY GENERATING OPTION

Annex 5: Electricity Generation Potential - Mogi Guaçu Landfill

Electricity Generation		Mogi Guacu	ı					
	Lloit	2006	2007	2008	2009	2010	2011	2012
	Unit	1st	2nd	3rd	4th	5th	6th	7th
Carbon Cashflow								
Total LFG emitted	m3/h	881	905	927	946	964	980	995
Carbon CF								
Total Adj. Net Emission Reductions	Tonnes CO2e/yr	0	23,540	24,109	24,623	25,088	25,509	25,890
Electricity Generation(MWh)		0	7,733	7,920	7,972	7,972	7,972	7,972
Cost								
Annual Operation Cost		-12,552	-12,552	-12,552	-12,552	-12,552	-12,552	-12,552
Annual Mentenace Cost		-12,000	-12,000	-12,000	-12,000	-12,000	-12,000	-12,000
Validation & Verification Cost			-5,000	-5,000	-5,000	-5,000	-5,000	-5,000
Adaptation Fee/CER	US\$0.2		-4,708	-4,822	-4,925	-5,018	-5,102	-5,178
Electricity Generation Cost	US\$70.0	0	-541,304	-554,375	-558,012	-558,012	-558,012	-558,012
Depreciation		-44,088	-44,088	-44,088	-44,088	-44,088	-44,088	-44,088
Interest		-29,392	-27,162	-24,799	-22,293	-19,637	-16,822	-13,838
Total Cost		-98,033	-646,815	-657,635	-658,870	-656,307	-653,576	-650,668
Income								
Price of CER		8.0	8.0	8.0	8.0	8.0	8.0	8.0
CER Sales		0.0	188 322	102 860	106 083	200 706	204 075	207 123
Electricity Tariff		50.0	50.0	50.0	50.0	200,700	50.0	50.0
Electricity Sales	US\$50.0	0.0	386 646	395 982	398 580	398 580	398 580	398 580
	00000.0	0	574 968	588 851	595 563	599,286	602 655	605 703
		0	074,000	000,001	000,000	000,200	002,000	000,700
Balance		-98,033	-71,847	-68,784	-63,306	-57,021	-50,921	-44,965
Income Tax		0	0	0	0	0	0	0
Current Income		-98,033	-71,847	-68,784	-63,306	-57,021	-50,921	-44,965
NPV(21years)	6,363							
IRR(21years)	#DIV/0!							

page 265

UNFCCC

Electricity Market Situation in Brazil

Other than financial return from the carbon market, the only potential revenue to the project derives from the use of gas to produce electricity. The feasibility of this project is, thus, dependent on factors related to energy sector. It is necessary to conduct a financial analysis to determine whether the project is an economically attractive course of action.

Historically, tariff levels in Brazil have been relatively low due to a centralized pricing structure fixed by the government. The government agency ANEEL (Electric Energy National Agency) controls the commercialisation and distribution of through pre-established contracts and prices. While small tariff increases have been observed in the last few years, they are insignificant and not enough to indicate that this scenario is going to change significantly. A free electricity market in Brazil is still in its infancy.

Source: http://europa.eu.int/comm/energy_transport/atlas/assets/images/Image71.gif

In addition to this electricity generation using landfill gas cannot rely on offsetting carbon income. Due to its enormous hydropower capacity Brazil's energy sector already has low carbon intensity and a correspondingly low carbon emission factor. There is also a lack of governmental pricing policies to support projects that replace fossil energy with new sources of clean energy.

The generation of electricity from landfill gas in Brazil carries several risks. There are clear managerial risks owing to the fact that few landfill operators have the requisite skills and expertise to negotiate long-term power purchase agreements. Moreover, there is considerable uncertainty attached to the production of landfill gas and hence to the reliability of electricity supply. Several external factors such as precipitation levels, waste composition and temperatures can severely impact gas production levels. Most of the required generation technology needs to be imported from international companies, which exposes the project to potential adverse changes in the exchange rate. Given these risks, electricity generation from landfill gas is seen as 'unproven' technology by local investors.

page 266

INFOO

Mogi Guaçu Generation Potential and Financial Analysis

A financial analysis was undertaken using assumptions that are highly conservative from the point of view of gas production. It needs to be noted that the landfill gas generation model used, the US EPA First Order Decay Model, has an inherent error up to 50%. A value of 4.95 kWh/m3 was used for the energy content of landfill gas. This number presents an accepted average and was also used in the calculation of the energy potential of the NovaGerar CDM project. According to the estimates used, the Mogi Guaçu landfill will produce 57,799,929 m³ of landfill gas between the start of the project in 2006 and the end of the first Kyoto Commitment Period in 2012. It is important to bear in mind that this number is purely an **estimate** and actual volumes could be considerably lower.

Taking into account a generator efficiency of 38%⁷⁷ (industry average for LFGTE generator sets from companies such as Caterpillar and Jenbacher), a methane collection efficiency of 75%, and insurance factor of 20%, a parasitic loss factor of 5% and 91% generator availability, it is estimated that between 2006 and 2012, approximately 56,394 MWh of electricity will be produced by the Mogi Guaçu landfill.

Source: www.dti.gov.uk/.../nr47/html/landfill_gas.htm

The US EPA estimates that levelized capital and O&M costs per kWh of landfill gas derived electricity are about 7 cents or US\$70/MWh⁷⁸. This is of course only an estimate, but to arrive at more accurate numbers it would be necessary to undertake a more detailed study. For the purpose of this assessment it was deemed to be sufficient to use a generally accepted factor. Given that LFGTE is already an established industry in the US, it is likely that costs in Brazil would be even higher as they would have to factor in importation costs as well as FOREX risk and additional expenses related to lack of experience. At the same time the price currently offered to small producer of electricity by the Brazilian regulatory authority (ANEEL) is only U\$58.4/MWh (as of November 2005 the tariff was fixed at R\$146.00 and assuming a long-term exchange rate of 2.50 R\$/US\$). Comparing the costs and revenue per MWh it becomes clear that at the current time it is not financially viable to undertake Landfill gas to Energy projects in Brazil.

In addition to this the CERs that could be earned from the displacement of fossil-derived electricity

⁷⁷ http://www.ge-energy.com/prod_serv/products/recip_engines/en/downloads/type2_en.pdf

⁷⁸ http://www.forester.net/mw_0401_retail.html

page 267

UNECO

through the generation of carbon neutral LFG energy are not sufficient to offset the estimated losses. The South-Southeast-Midwest electricity grid has a generally accepted Carbon Emission Factor of 0.249 tCO2e/MWh⁷⁹, which is relatively low. Between 2006 and 2012 the Mogi Guaçu landfill project is hence estimated to generate a net amount of 14,042 tCO2e. At a price of US\$10/CER, the electricity-related carbon component is not sufficient to offset the high generating costs/low electricity tariffs.

Therefore for the Mogi Guaçu landfill the NPV of the electricity and related carbon components over 7 years comes to **negative US\$1,401,647**. Thus the generation of electricity is currently not considered to be an option for the Mogi Guaçu CDM project.

⁷⁹ This CEF has been approved by the Brazilian Designated National Authority