

Japan Fund for the Joint Crediting Mechanism (JFJCM)

October 2019

Overview of the Asian Development Bank

- > Established in 1966
- > 68 members, 49 regional members, 41 borrowing members
- ➤ 3,000+ employees globally
- ≥ 32 offices
- Triple-A credit ratings (Moody's / S&P / Fitch)

> Approvals in 2018: (\$ million) Total ADB

(\$ mmon)	TOTAL ADD
Loans, Grants and others*	21,581
Sovereign	18,446
Loan	17,022
Guarantee	-
Grants	1,423
Nonsovereign	3,136
Loan	2,862
Guarantee	-
Equity Investment	274

^{*} Does not include technical assistance and cofinancing

ADB Strategy 2030:

Achieving a Prosperous, Inclusive, Resilient, and Sustainable Asia and the Pacific

Addressing Remaining Poverty and Reducing Inequalities

Accelerating Progress in Gender Equality

Tackling Climate Change, Building Climate and Disaster Resilience, and Enhancing Environmental Sustainability

Making Cities More Livable

Promoting Rural Development and Food Security

Strengthening Governance and Institutional Capacity

Fostering Regional Cooperation and Integration

Target Climate finance from ADB's own resources reach \$80 billion (2019-2030)

Deploying concessional resources

Internally managed resources (ADB donor trust funds and special funds)

- Climate Change Fund (CCF)
- Clean Energy Financing Partnership Facility (CEFPF)
- Urban Climate Change Resilience Trust Fund (UCCRTF)
- Asia-Pacific Climate Finance Fund (ACliFF)
- High Level Technology Fund (HLTF)
- · Others with bilaterals

Multilateral funds

- Climate Investment Funds (CIF)
- Global Environment Facility (GEF)
- Green Climate Fund (GCF)

Maximizing market mechanisms

- · Upfront carbon finance
 - Asia Pacific Carbon Fund
 - o Future Carbon Fund
- Carbon Market Technical Support Facility
 - CDM support
 - o domestic emissions trading
- Japan Fund for the Joint Crediting Mechanism
- Green and Climate Bonds
- Supporting other market mechanisms (e.g. renewable energy credits; feed-in tariffs)

Catalyzing private capital

- Direct project finance (lending, guarantees, syndications), and equity investment
- Public private partnerships:
 (PPPs) working with client DMCs
 across stages of PPPs

ADB's Carbon Market Program

Technical Support Facility

Commenced in 2006

Implemented through a series of 5 Technical Assistance projects

TA 6363: Preparing Clean Energy Projects Eligible for the Clean Development Mechanism

TA 6438: Implementation of the Technical Support Facility under the Carbon Market Initiative

TA 8223: Supporting the Use of Carbon Financing to Promote Green Growth in Asia and the Pacific

TA 8654: Supporting the Use of Carbon Financing from New Carbon Market Mechanisms to Promote Green Growth in Asia and the Pacific

TA 9062: Supporting Low-Carbon Development in Asia and the Pacific through Carbon Markets

Asia Pacific Carbon Fund

\$151.8 million Trust Fund to purchase pre-2013 CERs

Commenced in 2007

Fund Participants include Seven European Governments

Supported 71 CDM projects in 9 DMCs

Contracted 15.63 million CERs

Provided carbon finance to 1.9 GW renewable energy projects

All contracted CERs received and distributed to Fund Participants

Fund closed in 2014

Future Carbon Fund

\$115 million Trust Fund to purchase post-2012 CERs

Commenced in 2009

Fund Participants include Four Governments and two private sector entities from Europe and Asia

Contracted 10.45 million CERs with an investment of \$59.5 million

Supporting 36 CDM projects in 12 DMCs

Disbursed \$45.9 million as of 30 June 2019

Providing carbon finance support to 1.2 GW renewable energy projects

Fund will close in 2021

Japan Fund for the Joint Crediting Mechanism

\$70.0 million by MOEJ

Commenced in June 2014

JFJCM provides financial incentives for adoption of advanced low-carbon technologies in ADB-financed projects

Grant to sovereign projects (max. \$10 million) Interest subsidy to nonsovereign projects (max. \$10m)

\$31.48 million committed to five approved projects in Maldives, Cambodia, Bangladesh and Mongolia

Japan Fund for the Joint Crediting Mechanism

- > Established in June 2014 as one of ADB's trust funds
- > Contribution by Government of Japan: \$70.0M (2014-2019)
- ➤ Provides financial incentives (grants) for adoption of advanced lowcarbon technologies in ADB-financed projects that use the Joint Crediting Mechanism (JCM)*
- > Both sovereign and nonsovereign projects are eligible

^{*} JCM is a bilateral carbon market mechanism initiated by the government of Japan

JFJCM eligible countries

Mongolia **Bangladesh**

Maldives

Viet Nam

Lao PDR

Indonesia

Palau

Cambodia

11 out of 17 JCM partner countries are **ADB Developing Members**

Myanmar

Thailand

Philippines

2013

2014

2015

2016

2017

Ethiopia

Kenya

Costa Rica

Mexico

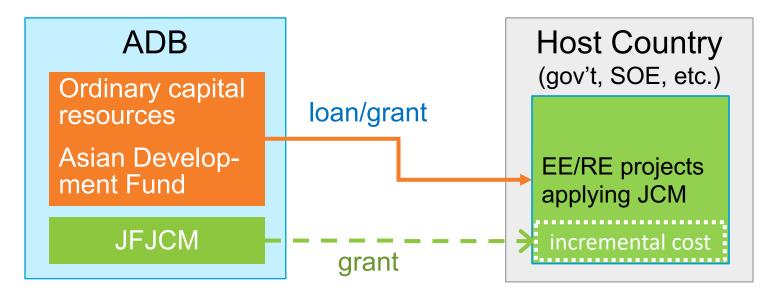
Saudi Arabia

Chile

Eligible projects and technologies

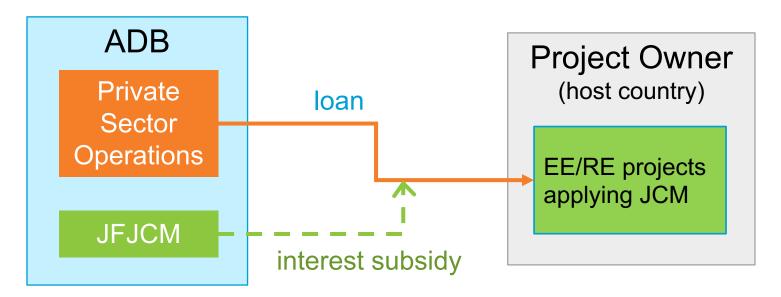
Eligible Project

- Project co-financed with an ADB or ADB administered funds.
 - * Can be used for additional financing to ongoing ADB project.


Eligible Technology

- Advanced low carbon technologies that reduce greenhouse gas (GHG) emission including CO₂ from energy source.
- ➤ The technologies must have a proven implementation and operation record of its technical effectiveness.

JFJCM support to ADB projects (sovereign)

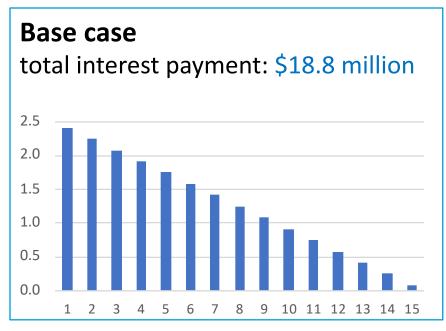


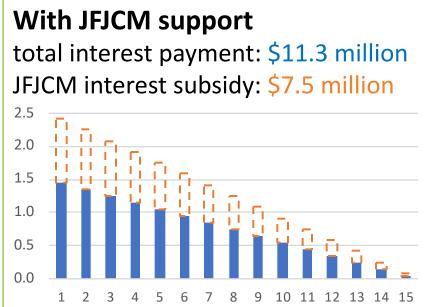
- ➤ JFJCM provides grant for incremental cost of advanced low-carbon technologies
- > Amount of grant, maximum of:
 - i. 10% of the project cost (capped to \$10 million)
 - ii. \$5 million if the project cost < \$50 million

JFJCM support to ADB projects (nonsovereign)

- > JFJCM provides interest subsidy to ADB's loan to energy efficiency / renewable energy projects applying JCM
- > Amount of interest subsidy:

10% of project cost (capped to \$10 million)


Interest subsidy under the JFJCM (example)


Assumptions of ADB loan

> Loan amount: \$50 million

➤ Interest rate: 5% (base case) → 3% (with JFJCM support)

> Repayment: 15-year amortization

Requirements under JFJCM: JCM application

The JFJCM subcomponents cannot apply for other international carbon market mechanisms (e.g. clean development mechanism)

JCM Application

- Preparation and approval of JCM Methodology
- Preparation of Project Design Documents (PDD)
- Validation by Third Party Entities (TPEs), and registration of the project
- Monitoring, reporting and verification of GHG emission reduction
- Issuance of the JCM credits and delivery to government(s)

Technical support may be provided by consultants hired by JFJCM

Points considered in project evaluation

As ADB loan project

- ➤ The project must be bankable
- Procurement through a competitive process
- > Contribution to development goals of host country
- Operational experience, track record and institutional capacity of project developer

As JFJCM project

- ➤ Use of advanced low-carbon technologies applying the joint crediting mechanism (JCM):
 - ✓ clear and long-term GHG emission reductions
 - ✓ possibility of robust MRV
- Cost effectiveness*
 - \checkmark cost of reducing 1tCO₂e ≤ \$40
 - * grant amount / (annual GHG emission reduction x project period)

ADB/JFJCM project non-sovereign approval process (1)

ADB loan process

Concept Review

- Review of business plan and financials
- Internal peer review
- Concept Review Committee's review

Due Diligence

- Technical, commercial, legal and safeguards due diligence
- > Finalize term sheet
- Formal risk rating
- Disclose safeguards documents

Final Review

- Investment Committee review
- President's review

JFJCM process

ITD Review

- Prepare Initial Project Title and Description (ITD)
- Government of Japan (GOJ) approval

Project Proposal preparation

- > JFJCM due diligence
- Prepare Project Proposal

Project Proposal review

- ADB approval (2-steps: Technical Advisory Group + Climate Change Steering Committee)
- ➢ GOJ approval*

* GOJ approval should be obtained before IC review, but ideally before term sheet.

Continued to next page

ADB Project Officer

ADB/JFJCM project non-sovereign approval process (2)

ADB loan process

JFJCM process (JCM Implementation)

Board Approval

- 21-day circulation to the Board for review
- Board's approval

Loan Agreement

Signing of loan agreement

Methodology Development and Approval

PDD Development, Validation and JCM Registration of Project

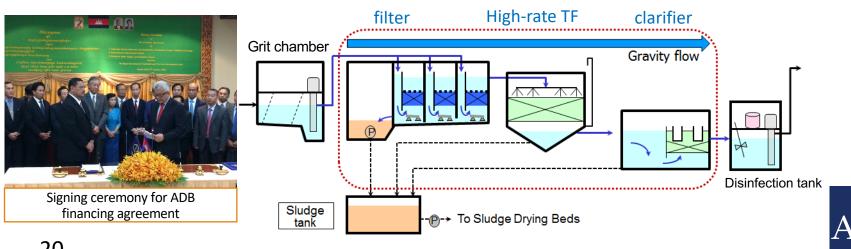
Monitoring, Verification and Issuance [at least 2-3 times during project period]

JFJCM approved projects

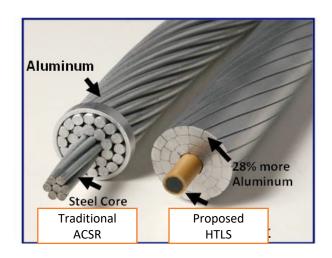
#	Project	Country	JFJCM grant	Approval	Technologies supported
1	Preparing Outer Islands for Sustainable Energy Development Project (POISED)	Maldives	\$5 million	Mar 2015	Advanced battery system and energy management system (EMS)
2	Provincial Water Supply and Sanitation Project	Cambodia	\$10 million	Dec 2017	Energy efficient wastewater treatment system
3	Southwest Transmission Grid Expansion Project	Bangladesh	\$7 million	Jul 2018	Energy efficient transmission lines
4	Upscaling Renewable Energy Sector Project	Mongolia	\$6 million	Sep 2018	Solar PV with advanced battery system and EMS
5	Improving Access to Health Services for Disadvantaged Groups Investment Program	Mongolia	\$3.48 million	Oct 2019 (tbc)	Energy efficient HVAC, high insulation window, rooftop solar PV and ground source heat pump
			\$31.48 millio	on	

Case study 1: micro-grid technology in Maldives

Project name	Preparing Outer Islands for Sustainable Energy Development Project
JFJCM grant	\$5 million
Technology supported	Advanced battery system and energy management system
Description	On top of 1.6 MW of solar PV installed under the project, battery storage and EMS supported by JFJCM will: > Smooth out the fluctuation of solar PV generation > Optimize diesel generator operation > Integrate large amounts of renewables to the grid
Location	Addu, Maldives
Emission reductions	1.3 thousand tCO ₂ /year (estimate)

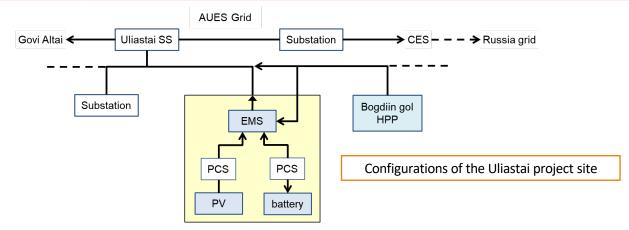


Case study 2: wastewater treatment in Cambodia


Project name	Provincial Water Supply and Sanitation Project
JFJCM grant	\$10 million
Technology supported	Energy efficient wastewater treatment
Description	Existing lagoon system will be replaced by a system consisting of high-rate trickling filter combined with filters and clarifiers, requiring a small area of land and less than 0.1 kWh/m³ of power for treatment
Location	Battambang, Cambodia
Emission reductions	6.4 thousand tCO ₂ e/year (estimate)

Case study 3: Advanced transmission lines in Bangladesh

Project name	Southwest Transmission Grid Expansion Project
JFJCM grant	\$7 million
Technology supported	Energy efficient transmission lines
Description	Energy efficient transmission lines will increase high-voltage network capacity while reducing transmission losses and emissions including carbon dioxide. The key technology is high-temperature low-sag (HTLS) conductors.
Location	Between Gopalganj and Barisal, Bangladesh
Emission reductions	23.1 thousand tCO ₂ /year (estimate)



Case study 4: Upscaling renewables in Mongolia

Project name	Upscaling Renewable Energy Sector Project
JFJCM grant	\$6 million
Technology supported	5MW solar PV system, advanced battery system of 3.6 MWh and energy management system
Description	This solar power plant with battery and EMS can supply as much locally produced renewable energy as possible to local consumers, reducing carbon intensive domestic and imported grid electricity, while strengthening the country's power self-sufficiency.
Location	Uliastai, Mongolia
Emission reductions	6.4 thousand tCO ₂ /year (estimate)

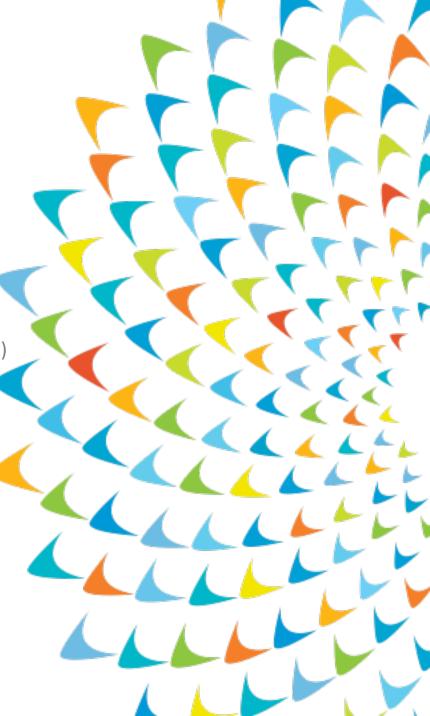
Case study 5: Green Hospital in Mongolia

Project name	Improving Access to Health Services for Disadvantaged Groups Investment Program
JFJCM grant	\$3.48 million
Technology supported	Energy efficient HVAC system, high insulation window, rooftop solar PV and ground source heat pump (GSHP)
Description	New building as expansion of existing hospital in UB will be constructed with adoption of low carbon technologies including HVAC system, high insulation windows and rooftop solar PV. New construction of three family health centers is also planned with GSHP installation, which replace the heat supply from electric heaters powered by coal fired power plants.
Location	Ulaanbaatar, Mongolia
Emission reductions	2.9 thousand tCO ₂ /year (estimate)

Shintaro Fujii

Environment and Climate Change Specialist

JFJCM Fund manager


+63 2 632 4287 | sfujii@adb.org

Takahiro Murayama

Low Carbon Project Development Specialist (Consultant)

+63 2 632 4444 | tmurayama.consultant@adb.org

Thank you.

