

Overview of the Financing Programme for JCM Model Projects

12th September 2019

Global Environment Centre Foundation (GEC)

- 1. Basic concept of the JCM and Financing Programme
- 2. Guideline for Project Proposal
- 3. "JCM Global Match"
- 4. Outreach Activities of GEC

Appendix: 7 Projects in Thailand (2018 and 2019)

Facilitating diffusion of advanced low-carbon or decarbonizing technologies, products, system, services and infrastructure as well as implementation of mitigation actions, and contributing to sustainable development of developing country.

Appropriately evaluating contributions from Japan to GHG emission reductions or removals in a quantitative manner and use them to achieve Japan's emission reduction target.

Contributing to the ultimate objective of the UNFCCC by facilitating global actions for GHG emission reductions or removals.

*measurement, reporting and verification

Basic concept of the JCM Model Projects (2) Geo Global Environment Centre Foundation

JCM Financing Programme (FY2013-2019), as of Sep 3, 2019 Centre Foundation

What kind of projects are supported by this financing programme?

Guideline

- Reduce energy-related CO2 emissions with leading low carbon technologies in partner countries
- Contribute to the sustainable development in partner countries.
- Reduction of GHG emissions achieved by the projects can be quantitatively calculated and verified.
- Facilities installed by the projects do not receive any other subsidy by the Government of Japan.

- (a) A representative participant of the model project shall be a Japanese entity of an international consortium.
- (b) A participant shall have capability for the implementation, such as technical capacity to appropriately implement the eligible project.
- (c) A participant shall have a financial basis to bear the costs necessary to appropriately implement the eligible project.
- (d) A participant shall have adequate management structures and handling capacity for accounting and other administrative work related to the eligible project;

Guideline

(e) A participant shall explain the contents, effect on GHG emission reductions, details of the cost, investment plan, etc. of the eligible project.

G

What kind of cost is covered & not covered by this programme? ✓ COVERED

- (a) Main construction work
- (b) Ancillary work
- (c) Machinery and appliances
- (d) Surveying and testing
- (e) Facilities/equipment (including monitoring equipment)
- (f) Administrative work; and

Guideline

(g) Other necessary costs approved by GEC

What is the criteria of cost-effectiveness?

JPY4,000/tCO2equivalent

Amount of financial support[JPY]

Emission reductions of GHG [tCO2equivalent/y] × legal durable years[y]

Legal durable years of the facilities is stipulated by the Japanese law, and are dependent on the industry classification.

JPY3,000/tCO2equivalent

In case the number of PV JCM Model Projects by each country is 5 or more. (Mongolia and Thailand)

Guideline

Budget	JPY9.9 billion (Approx. USD90million)	Financial support per project							
Executing Entity	International Consortium that consists of a Japanese entity and a JCM partner-country entity(ies)	From ¥50million to ¥2billion (approx.)							
Scope of Financing	Facilities, equipment, vehicles, etc. which reduce CO2 from fossil fuel combustion as well as construction cost for installing those facilities, etc.								
Eligible Projects	Start installation after the Contract of Finance is concluded and finish installation within 3 years.								
Maximum percentage of Financial Support	Maximum of 50% and reduce the percentage according to the number of already selected project(s) using a similar technology in each partner country. % Number of already selected project(s) using a similar technology in each partner country : none (0) = up to 50%, up to 3 (1-3) = up to 40%, more than 3 (>3) = up to 30%. The percentage of financial support will be determined by GEC.								
Cost-effectiveness	Cost-effectiveness of GHG emission reductions is expected to be JPY4,000/tCO2eq ※ If the number of PV projects in a partner country is 5 or more, cost-effectiveness is expected to be JPY3,000								

JCM Model Projects Schedule in FY2019

Global Environment Centre Foundation

Guideline

New Technolog	gies		Percentage of Financial S	upport :	White	0 projec	ct = Up t	o 50%		Yellow	1-3 pro	ject(s) =	Up to 40)%	Orange	more th	an 4 proj	iects = U	Jp to 30%		
Selected in FY2		bogy	JCM Methodology		Bangladesh			Maldives	Viet Nam	Lao PDR		Costa Rica		Cambodia		Saudi Arabia				Philippine	Tota
Selected III 1, 12	010	ystem	VN_AM006, ID_AM004	MN	BD	ET	KE	MV	VN 2	LA	ID 1	CR	PW	KH	MX	SA	CL	MM	TH 1	PH	4
	Chiller		BD_AM001, VN_AM011, ID_AM002, CR_AM002, TH_AM003, TH_AM005		2				3		4	1		1					3		14
	Refrigerator		ID_AM003, TH_AM008								1							2	4		7
		hiller Using Waste									2								2		2
		ction Type Air-	TH_AM006																1		
	conditioning		VN_AM012, ID_AM010	-					1		1								1		
		eezer Showcase	ID_AM008						-		1								1		
	Boiler		MN_AM002, ID_AM015	1					1		2				1			2	1		
	Water Heater	Using Waste Hea	t CR_AM003									1									
	Wasta Hoat P	covery System																2	1		
			VN_AM005, LA_AM003						4	1											
Autoclave		hting with	ID_AM005								2								2		
Multi-effect Distillation System	m	hting with em	ID_AM018, KH_AM001								1			1							
Multi-enect Distillation System	11		VN_AM013 TH_AM002						1										1		-
Injection Molding Machine		im							1		1								<u> </u>		
		Burners	ID_AM009								1										
		lace	VN_AM010						1												
		ng Control System							1					1					1		
Freaque- Loom			BD_AM003, ID_AM011, TH_AM004		1				-		2			-					1		
•	Old Corrugat	ed Cartons	ID_AM012								1										:
		Forming Device	VN_AM009						1												
Biogas Boiler		າ Chlorine	SA_AM001													1			1		
		g Machines	VN_AM014						1												
	otry crane																		1		
	Forkli	π \									1								1		-
	Multi-effect	ion System									-				1						
	Injection Mod	Iling Macro									1										
			MN_AM003, BD_AM002, KE_AM002, MV_AM001, VN_AM007, LA_AM002,																		
	Solar Power I	Plant	ID_AM013, CR_AM001, PW_AM001,	6	2		2	1	1	2	2	1	4	2	2		1		9	4	:
			KH_AM002, MX_AM001, CL_AM001,																		
	Cala Dana	Plant with Battery	TH_AM001 ID_AM017								1						1				-
		ower Plant	KE_AM003								3						1			3	
Reefer Container		Plant													1						
		er Plant									1		<u> </u>					1		1	
CNG-Diesel Hybrid Bus		<u> </u>									L						L	1	1		_
•		eneration	ET_AM003			1													1		
3.Effective Use	of Power Gener	ation by Waste									1							4	1		Γ
3.Effective Use Energy	Heat Recover	У	ID_AM001, TH_AM007								1							1	1		
	Gas Co-gene		ID_AM016, TH_AM009								2								3		
4. Waste Handlin	Waste-to-Ene		MM_AM001	_														1			
and Disposal	Power Gener	ation by Methane		1	1		l I	1	1			1	1		1				1		I -

Infrastructure through JCM

금등 생신

Global Environment Centre Foundation

RANSPOF

URBAN INFRASTRUCTURE

1 Thailand / FAST RETAILING CO., LTD. High Efficiency LED Lighting 2 Cambodia / AEON MALL Co., Ltd. Solar Power System and High Efficiency Centrifugal Chiller Bangladesh / Ebara Refrigeration Equipment & Systems Co., Ltd. High Efficiency Centrifugal Chiller 2 Mexico / Suntory Spirits Limited Once-through Boiler and Fuel Switching

Indonesia / Environmental Management and Technology Center Energy Saving in Industrial Wastewater Treatment System 4 Myanmar / Kirin Holdings Company, Limited. Energy Saving Brewing Systems 1 Thailand / TSB Co., Ltd. Floating Solar Power System 2 Mexico / NTT DATA INSTITUTE OF MANAGEMENT CONSULTING, Inc. Power Generation with Methane Gas Recovery System

05

PVs for shopping malls, office use / Eco driving / Modal shift / Low-carbon ports Energy-efficient air conditioners, etc. **INDUSTRY URBAN POWER GE NERATION** MANUFACTURING INFRASTRUCTURE **& SU PPLY** Waste-to-energy / Energy-saving water and sewage / Energy saving devices / Biomass / PVs, etc. Large-scale solar power / LED street lights, etc. Wast heat recovery power generation / Small hydropower generation, etc.

COMMERCE

Accelerating **International Promotion of** Infrastructure through JCM

Along with the Overseas Development Strategy (Environment) compiled by Cabinet Office, Government of Japan in June 2018, the JCM model project aims to contribute to global GHG emission reductions, through the diffusion of leading low carbon or decarbonizing technologies.

TRANSPORT

POWER GENERATION AND SUPPLY

COMMERCE

morphous High Efficiency Transformers in power grid 2 Viet Nam / Yokohama Water Co., Ltd. High Efficiency Water Pumps 3 Myanmar / JFE Engineering Corporation Waste to Energy Plant in Yangon City 3 Myanmar / Fujita Corporation Rice Husk Power Generation

06

https://gec.force.com/JCMGlobalMatch/

Objectives

- To facilitate project formation of the JCM
- To provide means to find project partners

Features

- Automated match-making website
- Web-based registration for future meetings
- Supported by financial institutions and consulting firms

QR code to see the website

Consultation by GEC

GEC provides application consultation in order to assist project formation for entities interested in JCM Model Project. Please feel free to contact us. Please send an e-mail to jcm-info@gec.jp. Subject of e-mail should be "Consultation on application for JCM Model Project (Your company name)".

Suitable for Getting advice on your proposal at various phases.

GEC JCM Promotion (2)

Outreach Activities of GEC

➢ GEC website on JCM

http://gec.jp/jcm/

➢ GEC's JCM Twitter

https://twitter.com/GEC_JCM_Info

JCM Seminar

Global Environment Centre Foundation(GEC) Tokyo Office

3rd Floor, Hongo Ozeki Bidg 3-19-4, Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN Phone : +81-3-6801-8773 / FAX : +81-3-6801-8861 E-mail:jcm-info@gec.jp URL : http://gec.jp/

List of JCM Model Projects Selected in 2018 - 2019

Global Environment Centre Foundation

Year	Partner Country	Entity	Project Title	Sector	Expected GHG Emission Reductions(tCO2/y)
2018	Thailand	The Kansai Electric Power Company, Incorporated	Introduction of Gas Co-generation System and Absorption Chiller to Fiber Factory	Energy Efficiency Improvement/ Effective Use of Energy	17,851
2018	Thailand	Tokyo Century Corporation	25MW Rooftop and Floating Solar Power Project in Industrial Park	Renewable Energy	10,678
2018	Thailand	Toyota Motor Corporation	Introduction of 3.4 MW Rooftop Solar Power System in Technical Center and Office Buildings	Renewable Energy	1,617
2018	Thailand	TEPIA Corporation Japan Co.,Ltd.	Introduction of Biomass Boiler to Cooking Oil Factory	Renewable Energy	29,759
2018	Thailand	Kanematsu KGK Corp.	Introduction of 0.8MW Solar Power System and High Efficiency Refrigerator to Food Factory	Energy Efficiency Improvement/ Renewable Energy	489
2019	Thailand	Toyota Motor Corporation	Introduction of 37 MW Solar Power System and High Efficiency Melting Furnace in Vehicle & Engine Factory	Energy Efficiency Improvement/ Renewable Energy	19,483
2019	Thailand	NIPPON STEEL ENGINEERING CO., LTD.	Efficiency Improvement of Co-generation System by Installation of Heat Exchanger in Fiber Factory	Energy Efficiency Improvement	359

Introduction of Gas Co-generation System and Absorption Chiller to Fiber Factory

PP (Japan): Kansai Electric Power Co., Inc., PP (Thailand): Kansai Energy Solutions (Thailand) Co., Ltd

Outline of GHG Mitigation Activity

This project reduces CO2 emissions by introducing gas co-generation system (5 MW class x 2set) and absorption chiller (800 USRT class) to fiber factory. These gas co-generation system and absorption chiller contribute to energy saving and cost reduction, and can improve reliability for power supply.

Expected GHG Emission Reductions

<u>17,851 t CO₂ / year</u>

=①Reference emissions – ②Project emissions

(1)Reference emissions = (Project electricity supply × CO2 emission factor of the grid) + (Project heat supply \div efficiency of reference boiler × CO2 emission factor of natural gas) + (Project removed heat \div COP of reference centrifugal chiller × CO2 emission factor of the grid)

②Project emissions = Project fuel consumption × CO2 emission factor of natural gas

Sites of Project

Solar Panel

25MW Rooftop and Floating Solar Power Project in Industrial Park

PP (Japan): Tokyo Century Corporation, PP (Thailand): Tisco Tokyo Leasing Co., Ltd., Impact Solar Limited

Outline of GHG Mitigation Activity

This project is to install PV systems by lease financing on the rooftops of the factories and the reservoir in an industrial park operated by a conglomerate in Thailand. The project will consequently contribute to GHG reduction by the use of renewable energy sources.

[Industrial Park]

[Reservoir]

Expected GHG Emission Reductions Sites of Project Laos 10,678 tCO2/年 ----Thailand Bangkok Approx. 100km from = (Reference CO2 emissions) [tCO2/year] งเทพมหานคร Cambo Suvarnabhumi - (Project CO2 Emission) [tCO2/year] International Airport. Gulf of = ((Reference Power consumption) [MWh/year] - 0 [MWh/year])) × Emission Factor [tCO2/MWh

Introduction of 3.4 MW Rooftop Solar Power System in Technical Center and Office Buildings

PP (Japan) : Toyota Motor Corporation , PP (Thailand): Toyota Daihatsu Engineering & Manufacturing Co., Ltd.

Outline of GHG Mitigation Activity

This project aims the reduction of CO2 emission by installin 3.4 MW solar power system on the rooftop of the technical center and office building of Toyota Daihatsu Engineering & Manufacturing Co., Ltd. located in Samutprakarn in eastern Bangkok.

Electricity generated by solar power system is consumed in-house and replaces part of grid electricity consumption.

Expected GHG Emission Reductions

1,617 tCO₂/year

- = (Reference CO₂ emissions) [tCO₂/year]
 (Project CO₂ Emission) [tCO₂/year]
- = ((Reference Power consumption) [MWh/year]
 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

Sites of Project

JCM Model Project (FY2018)

Partner Country: Thailand

Introduction of Biomass Boiler to Cooking Oil Factory

PP (Japan): Tepia Corporation Japan Co., Ltd. PP (Thailand): Thanakorn Vegetable Oil Products Co., Ltd.

Outline of GHG Mitigation Activity

A biomass boiler with the steam production capacity of 35 tons per hour is installed to a cooking oil factory in Samut Prakan Province. The steam is used in the oil production process.

Palm Kernel Shell (PKS) is used as its biomass fuel, and PKS is procured from multiple suppliers so as to secure the stability of steam production.

Expected GHG Emission Reductions

<u>29,759 tCO₂/year</u>

- = Reference CO₂ emissions (Ry) [tCO₂/year]
- Project CO₂ Emission (Py) [tCO₂/year]
- Ry=Reference fuel consumption (RQfy) [t/year]
- * Emission Factor (furf) [tCO₂/t] + Reference Power consumption (Rqey) [MWh/year]* Emission Factor (gef) [tCO₂/MWh]
- Py=Project fuel consumption (PQfy) [t/year]

* Emission Factor (fupf) [tCO₂/t] + Project Power consumption (Pqey) [MWh/year]* Emission Factor (gef) [tCO₂/MWh]

JCM Model Project (FY2018)

Partner Country: Thailand

Introduction of 0.8MW Solar Power System and High Efficiency Refrigerator to Food Factory PP (Japan): Kanematsu KGK Corp, PP (Thailand): THAI DELMAR CO.,LTD

Outline of GHG Mitigation Activity

THAI DELMAR CO.,LTD constructs their new food factory in the Asia Industrial Estate in Thailand.

By installing a 0.8MW Solar Power System, this project reduces grid power consumption and CO2 emission.

By installing a high efficiency refrigerator using NH3 as primary and CO2 as secondary refrigerant, this project reduces power consumption and CO2 emission.

Expected GHG Emission Reductions

489 t-CO2 /year

Solar Power:349t-CO2/year

- = ((Reference Power consumption) [MWh/year]
 - 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

High Efficiency Refrigerator:132t-CO2/year

= (Reference CO₂ emissions) [tCO₂/year]

Sites of Project

JCM Model Project (FY2019)

Partner Country: Thailand

Introduction of 37 MW Solar Power System and High Efficiency Melting Furnace in Vehicle & Engine Factory PP(Japan) Toyota Motor Corporation, PP(Thailand) Toyota Motor Thailand Co., Ltd., Siam Toyota Manufacturing co., Ltd., Toyota Daihatsu Engineering & Manufacturing Co., Ltd.

Outline of GHG Mitigation Activity

This project aims the reduction of CO₂ emission by installing 37 MW solar power system on the rooftop of the vehicle factory of Toyota Motor Thailand Co., Ltd. (TMT) located in Samutprakarn & Chachoengsao and engine factory of Siam Toyota Manufacturing co., Ltd. (STM) located in Chonburi in eastern Bangkok. Electricity generated by solar power system is consumed in-house and replaces part of grid electricity consumption.

 CO_2 emissions are also reduced by replacing the existing melting furnace in STM with a high efficient medium-frequency induction melting furnace.

Efficiency Improvement of Co-generation System by Installation of Heat Exchanger in Fiber Factory PP (Japan): Nippon Steel Engineering Co., Ltd., PP (Thailand): NS-OG Energy Solutions (Thailand) Ltd.

Outline of GHG Mitigation Activity

This project aims to efficiently utilize unused thermal energy of the co-generation system to heat boiler feed water. A heat exchanger is additionally installed to the existing co-generation system which is composed of 7MW gas turbine and heat recovery steam generator equipped with duct burner.

Natural gas fuel used for duct burner is reduced by approx. 4%, by increasing the temperature of boiler feed water by approx. 20 degree Celsius.

Expected GHG Emission Reductions

Project site

<u>359tCO₂/year</u>

GHG Emission Reductions = Reference CO_2 Emission - Project CO_2 Emission

Reference CO_2 Emission = [(BFW* temp. after heat recovery)-(BFW temp. before heat recovery)] × (BFW amount) x (Specific heat of water) / (Boiler efficiency) x (CO₂ emission coefficient of fuel)

Project CO_2 Emission = 0

- Project site is located in Samutprakan province, adjacent to Bangkok.
- Project site is located 30 km south from Suvarnabhumi International Airport.

