

TURBODEN

ORC Technology development in Chilean market

ORC COGENERATION SYSTEM FROM YOUR GREEN FUEL.

TURBODEN IS A GROUP COMPANY OF MHI

MHI GROUP AT A GLANCE

One of the world's leading heavy machinery manufacturers, with

consolidated sales of around \$38

billion (in fiscal 2016). Foundation July 7, 1884

SYSTEMS

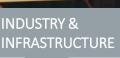
• Pumps

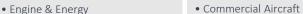
• Thermal Power Systems


• Nuclear Energy Systems • Offshore Wind Power Systems

\$12.9 B NET SALES

Marine Machinery


Compressors


Aero Engines

- Turbochargers
- Air-Conditioning & Refrigeration
- Automotive Thermal Systems
- Industry Instruments
- Machinery/Equipment
- Mechatronics Systems/ITS
- Metals Machinery
- Environmental Systems
- Chemical Plants
- Shipbuilding & Ocean Develop.
- Land Transportation Systems

- Mitsubishi Regional Jet (MRJ)

 - Defense Aircraft
 - Missile Systems
 - Space Systems
 - Special Vehicles
 - Naval Ships
 - Maritime & Space Systems

83,000 **EMPLOYEES** WORLDWIDE

MITSUBISHI IEAVY INDUSTRIES, LTD.

\$38B

ANNUAL

REVENUE

300 COMPANIES WORLDWIDE

31,783 **PATENTS**

GLOBALLY

\$1.3B OPERATING INCOME

54% SALES OUTSIDE JAPAN

\$15.6 B NET SALES

\$6.3 B NET SALES

TURBODEN – JCM Seminar – ORC Technology development in Chilean market

MILESTONES

Prof. Mario Gaia makes experience in the field of ORC within his research group at Politecnico di Milano. Prof. Mario Gaia founds Turboden to design and manufacture ORC turbogenerators. First ORC biomass plant in Switzerland (300 kW).

United Technologies Corp. (UTC) acquires the majority of Turboden's quota. PW Power Systems supports Turboden in new markets beyond Europe.

More than 380 ORC plants in the world, more than 320 in operation.

First prototype of a solar thermodynamic ORC.

Turboden develops research projects in solar, geothermal and heat recovery applications.

Turboden installs ORC biomass plants, especially in Austria, Germany and Italy.

MHI acquires the majority of Turboden. Italian quota-holders stay in charge of management.

 1990
 2000
 2010
 2019

 ORC size developed ORC plants number
 300 kW
 1 - 2 - 4 MW
 5 - 8 - 10 MW
 17 MW

 ORC plants number
 1
 100
 220
 380+

GLOBAL AND PROVEN EXPERIENCE

PLANTS:

384

COUNTRIES:

45

TOTAL CAPACITY:

630 MWe

CUMULATIVE OPERATION TIME:

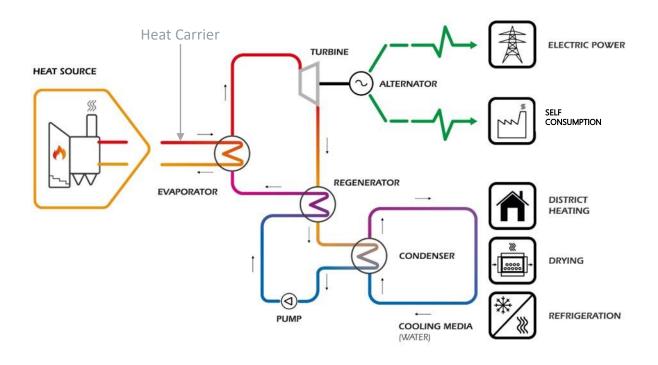
15 million hours

ENERGY GENERATED:

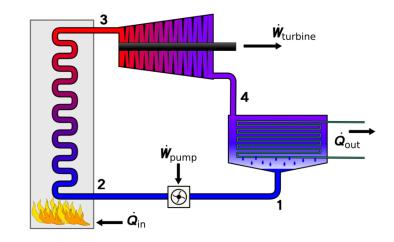
19 thousand GWh

AVERAGE AVAILABILITY:

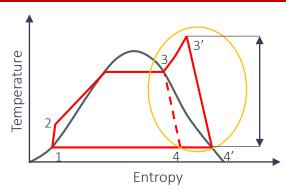
98+%



Last update: August 2019


ORC – WHAT IS IT

Organic Rankine Cycle


Steam Rankine Cycle

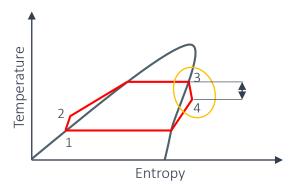
THERMODYNAMIC CYCLE: ORC VS STEAM

STEAM RANKINE CYCLE (SRC)

- High enthalpy drop
- High pressures and temperatures
- Superheating needed
- Risk of blade erosion
- Water treatment required
- Highly skilled personnel needed
- Periodic major overhaul

Other features

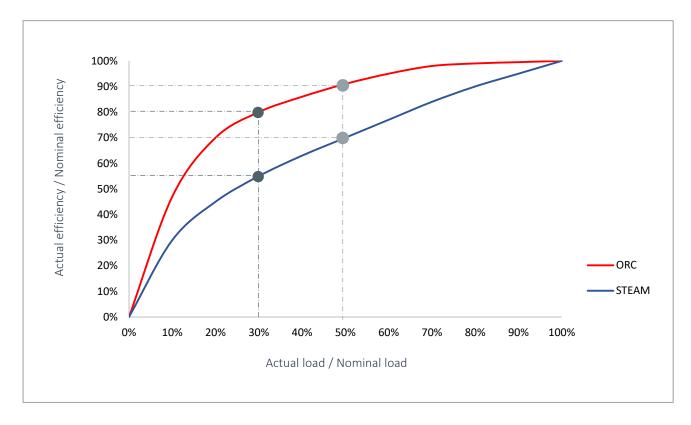
costs


Thermodynamic features

Operation and maintenance

and consequences

- Low flexibility with significantly lower performances at partial load
- Convenience for large plants and high temperatures


ORGANIC RANKINE CYCLE (ORC)

- Small enthalpy drop
- No supercritical pressure
- No need to superheat
- No risk of blade erosion
- Water-free system
- Minimum personnel and Operation & Maintenance cost
- No major overhaul
- Completely automatic
- High flexibility Wide operational range from 10% to 110%
- High availability (average >98%)

COMPARISON WITH STEAM TECHNOLOGY

50% PARTIAL LOAD

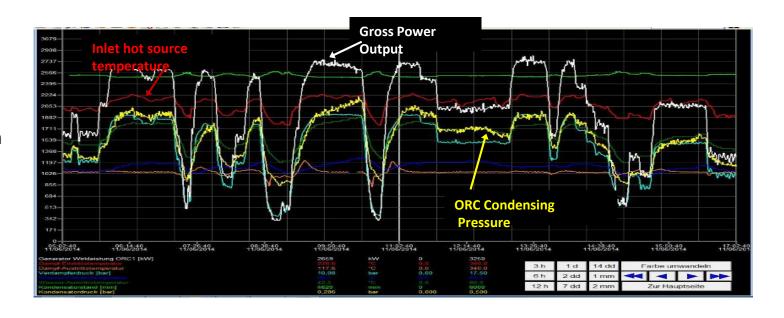
ORC 90%

STEAM 70%

30% PARTIAL LOAD
ORC 80%
STEAM 55%

NOTE: steam turbine suffers partial load operation due to high risk of blade erosion.

ORC FEATURES AND ADVANTAGES



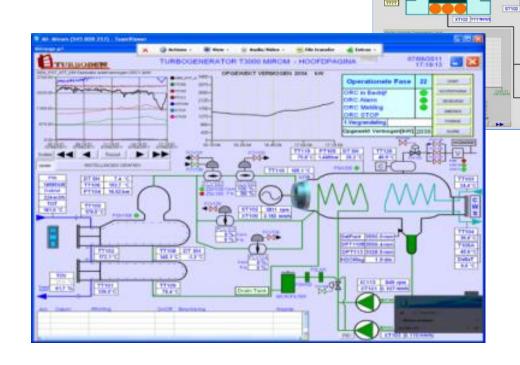
Features

- High turbine efficiency (~ 85%)
- Low number of stages
- Low mechanical stress turbine (low peripheral speed, moderate temperature)
- No blades erosion (no liquid particles) & small or no corrosion in heat exchangers and piping
- Low turbine RPM

Operation advantages

- Simple start-stop procedures
- Automatic, unattended operation
- Quiet operation
- High Availability (> 98%)
- Turn-down to 10% and lower
- Minimum O&M requirements
- Long life

ORC OPERATION & MAINTENANCE


The **Turboden ORC modules are completely automatic** and this permit to minimize the quantity and the qualification of the labour required by the unit operation.

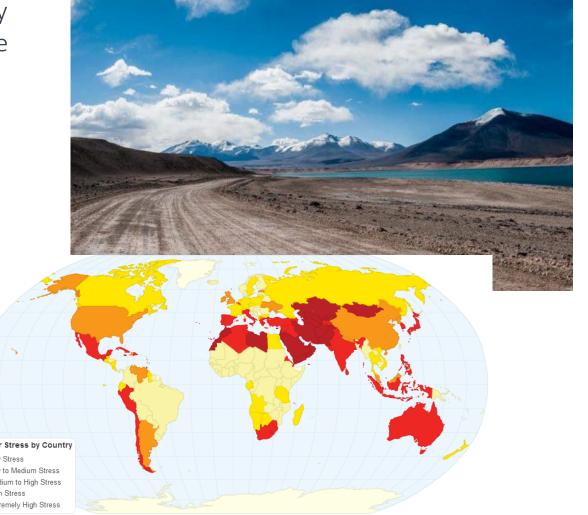
No Major Overhaul

Remote monitoring system

Turboden staff can:

- control the ORC working parameters
- make remote adjustments and troubleshoot
- optimize the ORC's performance
- give general technical support to customer operators

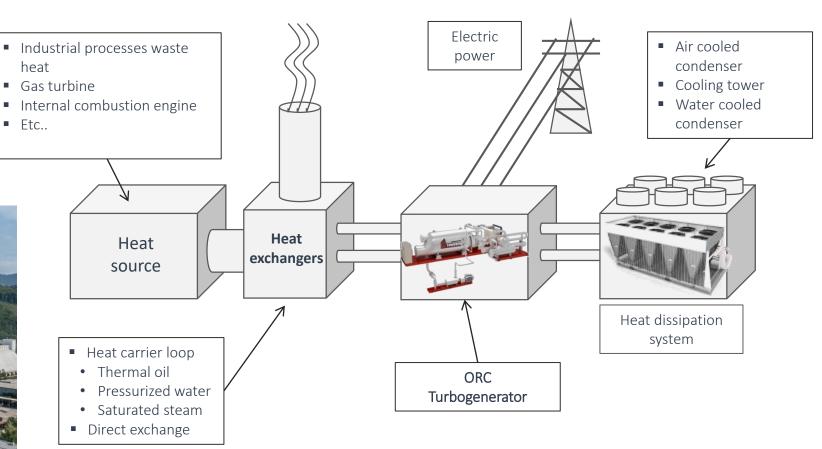
MAIN FIELDS OF APPLICATION


CHILE - FACING CLIMATE CHANGE

- Chile comply with 7 of the 9 conditions of vulnerability
- One of the ten countries most affected climate change
- Water scarcity
- Cities pollution
- Increasing energy demand

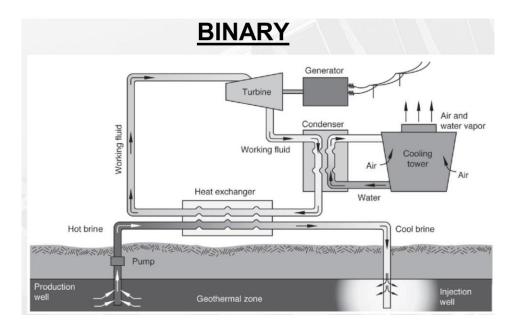
How can **ORC** technology contribute?

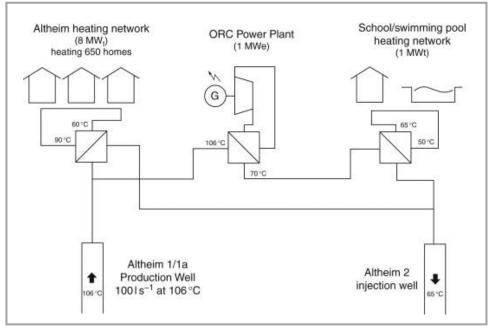
- Water free power generation plants (Biomass and Waste Heat Recovery)
- CHP District heating cogeneration plants (Biomass and Geothermal)
- Low impact geothermal binary plants
- Large Heat Pumps



WASTE HEAT RECOVERY

- Cement production
- Glass production
- Foundries
- Mining
- Internal combustion engines




GEOTHERMAL PLANTS

- Modular technology range size from 1
 MW up to 20 MW per single shaft
- Capable to exploit both the separated hot brine & steam (two phase flow)
- Full reinjection of geothermal fluid is possible (with dry cooling)

POWER GENERATION FROM BIOMASS — CASE STUDY

CUSTOMER:

undisclosed

LOCATION:

Chile

ORC SIZE:

3.7 Mwe Gross

DESCRIPTION:

High efficiency ORC (HRS) to maximize the electrical production

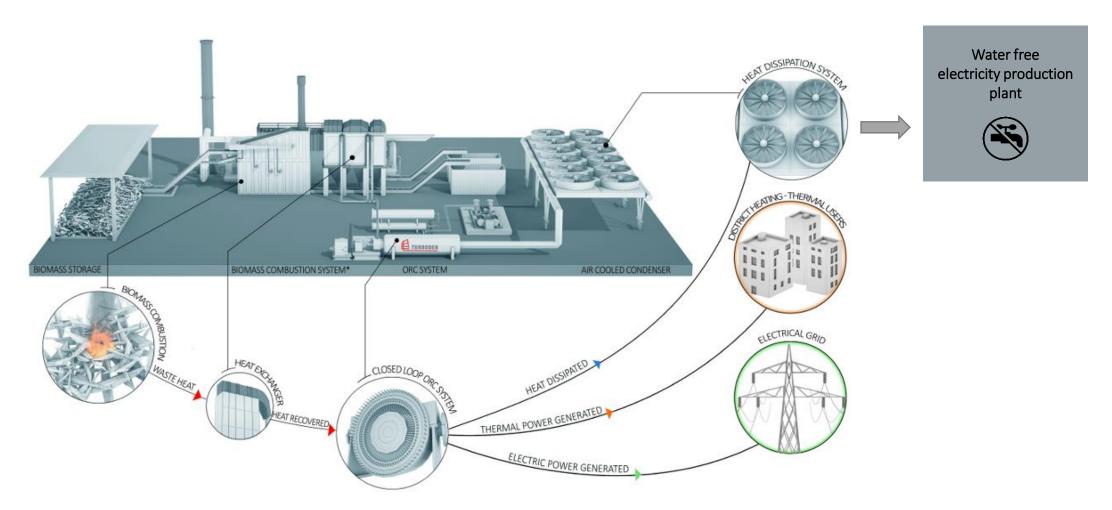
FUEL:

Rice Husk

HFAT CARRIFR:

thermal oil

COOLING SYSTEM:


Air Cooled Condenser

ORC to provide power to the national grid

BIOMASS ORC PLANT

WHY CHOOSE ORC FOR ENERGY EFFICIENCY?

Generate profit from leveraging a renewable source or waste heat

Reduce specific production cost by decreasing energy demand

Improve company sustainability

Reduce CO₂ emissions

AN EXIENSIVE	NETWORK	OF INSTITU	JIIONAL
RELATIONS			

THE ORC CYCLE – HOW IT WORKS

OUR EXPERIENCE. YOUR POWER.