JCM Project Design Document (PDD), JCM proposed methodology and their attached sheets are preliminary drafts and have neither been officially registered/approved under the JCM, nor are guaranteed to be officially registered/ approved under the JCM.

Bilateral Offset Credit Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	People's Republic of Bangladesh	
Name of the methodology proponents	Toyota Tsusho Corporation	
submitting this form	Mitsubishi UFJ Morgan Stanley Securities Co.,	
	Ltd.	
Sectoral scope(s) to which the Proposed	4: Manufacturing Industries	
Methodology applies		
Title of the proposed methodology, and	Energy efficiency improvement through the	
version number	introduction of energy efficient looms in textile	
	industry	
	Ver. 01.0	
List of documents to be attached to this form	☐The attached draft BOCM-PDD:	
(please check):	☐Additional information	
Date of completion	13/02/2014	

History of the proposed methodology

Version	Date	Contents revised	

A. Title of the methodology

Energy efficiency improvement through the introduction of energy efficient looms in textile industry

B. Terms and definitions

Terms	Definitions
Reference Loom	A reference loom is a technology that occupies more than
	50 % of the share of all loom imports in Bangladesh in the
	most recent three years prior to the start of the project.

C. Summary of the methodology

Items	Summary	
GHG emission reduction	The methodology involves the introduction of energy efficient	
measures	weaving looms (e.g. air-jet looms) in existing or new textile	
	weaving facilities.	
Calculation of reference	The reference emissions are calculated by multiplying the	
emissions	project output by a CO ₂ emission reduction coefficient that is	
	determined ex-ante for each type/group of textile output.	
Calculation of project	Project emissions equal the GHG emissions associated with the	
emissions	energy consumption by the project.	
Monitoring parameters	Project output per type of textile output	
	Energy consumption by the project	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project facility is either an existing or a new textile product weaving facility.	
Criterion 2	The looms introduced as part of the project have energy efficiency that is at least	
	10% higher than that of reference looms.	
Criterion 3	For existing facilities, no air jet looms or other highly efficient looms have been	
	installed prior to the start of the project.	

Criterion 4	For existing facilities, the type of output does not change after the start of the
	project. However, increase of output production capacity is allowed.
Criterion 5	No regulations in Bangladesh require the use of energy efficient looms. In case
	such regulations exist, the looms introduced as part of the project have energy
	efficiency that is higher than the energy efficiency required by the regulations.
Criterion 6	The energy consumption of the new looms should be directly measurable.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption in the reference scenario	CO_2	
Project emissions		
Emission sources	GHG types	
Electricity consumption by the project	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are determined following the following step-wise approach:

STEP 1: Determine the reference technology

This can be determined from customs statistics data or other official statistics.

- STEP 2: Classify the final project output per type of textile product

 Depending on the specific conditions in the textile production facility, the textile output

 can be classified into several types, for example simple product and special product.
- STEP 3: Determine the emissions coefficient for each type of final project output

 The emission coefficient should be estimated in tCO₂/m² of final output for each type of textile product determined. The emission coefficient should be determined based on manufacturer's specification or using actual production data.
- STEP 4: Calculate the reference emissions

F.2. Calculation of reference emissions

Reference emissions are calculated as per the following formula:

$$RE_p = \sum_{g} PO_{g,p} \times EF_g$$

Where:

RE_p	Reference emissions in period p (tCO ₂)	
$PO_{g,p}$	Final project output for the product in group g in period p (m ²)	
EF_g	Emission factor for group g (tCO ₂ /m ²)	

G. Calculation of project emissions

Project emissions are calculated as per the following formula:

$$PE_p = EC_p \times GEF_p$$

Where:

PE_p	Project emissions in period p (tCO ₂)	
EC_p	Electricity consumption by the project looms in period p. (MWh)	
GEF_p	Grid emission factor in period p. (tCO ₂ /MWh)	

H. Calculation of emissions reductions

Emission reductions are calculated as per the following formula:

$$ER_p = RE_p - PE_p$$

Where

ER_p	Emission reductions in period p (tCO ₂)
RE_p	Reference emissions in period p (tCO ₂)
PE_p	Project emissions in period p (tCO ₂)

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
GEF_p	Grid emission factor in period p. (tCO ₂ /MWh)	Government of Bangladesh
		Department of Environment
EF_g	Emission factor for group g. (tCO ₂ /m ²)	Calculated