JCM Project Design Document (PDD), JCM proposed methodology and their attached sheets are preliminary drafts and have neither been officially registered/approved under the JCM, nor are guaranteed to be officially registered/ approved under the JCM. JCM_KH_AM[XXX]_ver1.0 Sectoral scope: 3

Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Cambodia	
Name of the methodology proponents	Metawater Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Energy Saving by Introducing High Efficiency	
version number	Electric Transformers_ver01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	February 17, 2015	

History of the proposed methodology

Version	Date	Contents revised
1.0	February 17, 2015	First version

A. Title of the methodology

Energy Saving by Introducing High Efficiency Electric Transformers

B. Terms and definitions

Terms	Definitions
Electric transformer	A piece of equipment which converts AC voltage by using
	electromagnetic induction.
Project transformer	An electric transformer which is introduced in a JCM project.
Reference transformer	A transformer, which will be selected in a way that the GHG
	emissions will be calculated more conservatively when
	compared to the calculation when the transformer is
	continuously used or newly installed if a JCM project is NOT
	implemented.
Primary side of transformer	An input side of AC power to transformer.
Secondary side of transformer	An output side of AC power from transformer.

C. Summary of the methodology

Items		Summary	
GHG emission	reduction	Electricity transformation loss occurs when electric transformers	
measures		operate. By introducing high efficiency electric transformers,	
		GHG emissions will be decreased through reduction of	
		electricity loss during transformation.	
Calculation of	reference	Reference emissions are GHG emissions from electricity	
emissions		transformation loss caused by reference electric transformers.	
		Reference emissions are calculated using transformed electricity	
		at the secondary side to project transformers, electricity	
		transformation efficiency of reference transformers and the	
		emission factor of a grid.	
Calculation of	project	Project emissions are GHG emissions from electricity	
emissions		transformation loss caused by project electric transformers.	

	Project emissions are calculated using electricity loss from
	project transformers, which represents different amounts of
	electricity between the primary and secondary sides of project
	electric transformers, and the emission factor of a grid.
Monitoring parameters	- Amount of transformed electricity at the primary side of
	electric transformers.
	(Measured at the nearest circuit breaker to the primary side.)
	- Amount of transformed electricity at the secondary side of
	electric transformers.
	(Measured at the nearest circuit breaker to the secondary side.)

D. Eligibility criteria		
This methodology is applicable to projects that meet all of the following criteria:		
Criterion 1 Capacity of project transformers is between 500kVA and 1,000kVA.		
Criterion 2 The rated efficiency of project transformers is at least 98.5%.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity transformation loss from reference transformers	CO ₂	
Project emissions		
Emission sources	GHG types	
Electricity transformation loss from project transformers	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are the amount of GHG emissions derived from electricity transformation loss from reference transformers during a given period.

Amount of electricity transformation loss from reference transformers is calculated using the amount of transformed electricity at the secondary side of project transformers, electricity transformation efficiency of reference transformers and the emission factor from a grid.

In order to calculate the GHG emissions reduction in a conservative way, the reference transformer is determined in the following manner,.

- The transformer whose electricity transformation efficiency is comparatively high will be selected for the reference transformer.
- The electricity transformation efficiency depends on the capacity and operation load factor of transformers.

F.2. Calculation of reference emissions

 $RE_p = \{ET_{PJ,2,p} * (1/\eta_{REF} - 1)\} * EF_{grid}$

RE_p	Reference emissions during a given period $p [tCO_2/p]$	
$ET_{PJ,2,p}$	Amount of transformed electricity at the secondary side of project transformers	
	during a given period p [MWh/p]	
$\eta_{\scriptscriptstyle REF}$	Electricity transformation efficiency of reference transformers [-]	
EF_{grid}	CO ₂ emission factor of a grid [tCO ₂ /MWh]	

G. Calculation of project emissions

$$PE_p = (ET_{PJ,I,p} - ET_{PJ,2,p}) * EF_{grid}$$

PE_p	Project emissions during a given period $p [tCO_2/p]$	
$ET_{PJ,1,p}$	Amount of transformed electricity at the primary side of project transformers during	
	a given period p [MWh/p]	
$ET_{PJ,2,p}$	Amount of transformed electricity at the secondary side of project transformers	
	during a given period p [MWh/p]	

H. Calculation of emissions reduction

Emissions reduction is the difference between the reference emissions and the project emissions and calculated as follows: $ER_p = RE_p - PE_p$

I. Data and parameters fixed *ex ante*

Parameter	Description of data	Sources
$\eta_{\scriptscriptstyle REF}$	Default value: 0.9799	Manufacturers' test data of
	The tranformer's efficiency is the highest among	tranformers installed at Phnom
	the transformers', and those transformers have	Penh Water Supply Authority's
	similar similar capacity to project transformers'.	water treatment plant, or
		nominal value indicated in
		manufacturers' catalog of
		transformers which will be
		designated and approved when
		installed by Electricité du
		Cambodge.
EF _{grid}	Fixed ex-ante: 0.6257 tCO ₂ /MWh	Data is obtained from Climate
	CO ₂ emission factor of a grid to which a target	Change Department, Ministry of
	plant is connected.	Environment, Cambodia.
		This value will be updated each
		year, if necessary.

The sources of each data and parameter fixed ex ante are listed as below.