

Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Cambodia	
Name of the methodology proponents	Metawater Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Energy Saving by Introducing Inverter-control	
version number	System to Pumps_ver01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	February 17, 2015	

History of the proposed methodology

Version	Date	Contents revised
1.0	February 17, 2015	First version

A. Title of the methodology

Energy Saving by Introducing Inverter-control System to Pumps

B. Terms and definitions

Terms	Definitions
Inverter	A piece of equipment which controls the motor's speed in
	accordance with the flow rate of a pump.
Project pump	A pump which has inverter-control system in a JCM project.
Reference pump	A pump which will be selected in a way that the GHG
	emissions will be calculated more conservatively compared
	with the calculation when the pump is continuously used or
	newly installed if a JCM project is NOT implemented.
Periodical check	A periodical performance evaluation done by a manufacturer
	or an agent who is authorized by the manufacturer in order to
	maintain pumps' and inverter's performance.

C. Summary of the methodology

Items		Summary	
GHG emission	reduction	An inverter-control system helps to save energy during a pump's	
measures		operation. By introducing an inverter-control system to pumps	
		in Cambodia, GHG emissions will be decreased through	
		reduction of electricity consumption from a grid.	
Calculation of	reference	Reference emissions are GHG emissions emitted by using	
emissions		reference pumps without an inverter-control system.	
		Reference emissions are calculated using the amount of	
		electricity consumed by project pumps, the ratio of electricity	
		consumption ratio of reference pumps to project pumps and the	
		emission factor of a grid.	
Calculation of	project	Project emissions are GHG emissions emitted by using project	
emissions		pumps with an inverter-control system.	

	Project emissions are calculated using the amount of electricity
	consumed by project pumps and the emission factor of a grid.
Monitoring parameters	- Amount of electricity consumed by project pumps or the
	electric current of those pumps. (at the primary side of inverter)
	- Number of hours for project pumps to operate non-stop at least
	60 minutes during a given period.

D. Eligibility criteria

This methodology is applicable to projects that meet all of the following criteria:

Criterion 1	A project which introduces an inverter-control system to pumps without an
	inverter-control system.
Criterion 2	The capacity of project pump motors is more than 100 kW.
Criterion 3	The rated electricity conversion efficiency is more than 97% and rated power
	factor is more than 95% of a high-voltage inverter.
Criterion 4	Periodical check is planned to perform more than 2 times annually.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption of reference pumps	CO ₂	
Project emissions		
Emission sources	GHG types	
Electricity consumption of project pumps	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are the amount of GHG emitted by reference pumps (without an inverter-control system) to distribute a given amount of water during a given period.

The amount of GHG emissions is calculated by using electricity consumed by project pumps (with an inverter-control system), the ratio of electricity consumption ratio of reference pumps to project pumps, and an electricity emission factor from a grid.

In order to calculate the GHG emissions reduction in a conservative way, the reference pump is determined in the following manner :

- Those pumps whose electricity consumption ratio is comparatively small for a given flow rate will be selected for the reference pumps

F.2. Calculation of reference emissions

 $RE_p = \{EC_{PJ, p} * (P_{REF, LF, p} / P_{PJ, LF, p})\} * EF_{grid}$

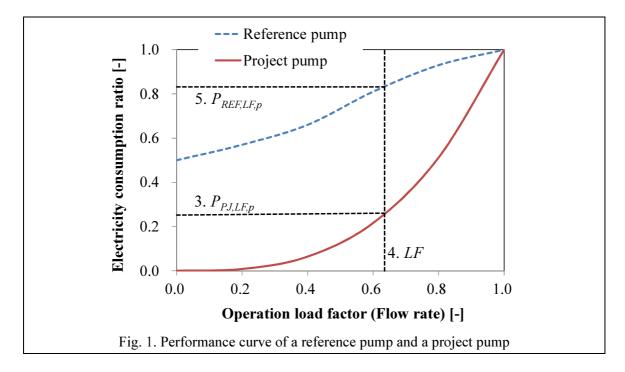
 RE_p Reference emissions during a given period p [tCO₂/p]

- $EC_{PJ,p}$ Amount of electricity consumed by project pumps during a given period p [MWh/p]
- *LF* Operation load factor (flow rate) of project pumps [-]
- $P_{REF,LEp}$ Electricity consumption ratio of reference pumps at LF [-]
- $P_{PJ,LEp}$ Electricity consumption ratio of project pumps at LF [-]
- EF_{grid} CO₂ emission factor of a grid [tCO₂/MWh]

Determination of $P_{PJ,LEp}$ and $P_{REF,LEp}$ (refer to Fig. 1)

- 1. If project pumps operate non-stop exact 60 minutes, register EC_{PJp} as $EC_{PJ,p,i}$.
 - *EC*_{*PJ*,*p*,*i*}: Amount of electricity consumed by project pumps during an hour [kWh]

2.
$$P_{PJ,LE,p,i} = EC_{PJ,p,i} / EC_{rated}$$


EC_{rated}: Rated electricity consumption of project pumps per hour [kWh]

3.
$$P_{PJ,LF,p} = \sum_{i=1}^{h} P_{PJ,LF,p,i} / h$$

h: Number of hours for project pumps to operate non-stop at least 60 minutes during a given period

- 4. *LF* is the operation load factor of project pumps when the electricity consumption ratio is $P_{PJ,LFp}$. *LF* is determined by visual measurement of the performance curve of a project pump in Fig. 1.
- 5. $P_{REF,LEp}$ is the electricity consumption ratio of reference pumps when the operation load factor is *LF*.

The performance curve in Fig. 1 is adjusted so that the electricity consumption ratio will be 1 when the operation load factor is 1. By dividing experimental data from manufacturer by rated value, both the operation load factor and the electricity consumption ratio in Fig. 1 should be non-dimensionalized.

G. Calculation of project emissions

 $PE_p = EC_{PJ, p} * EF_{grid}$

 PE_p Project emissions during a given period p [tCO2/p] $EC_{PJ, p}$ Amount of electricity consumed by project pumps with an inverter-control system
during a given period p [MWh/p]

H. Calculation of emissions reduction

Emissions reduction is the difference between the reference emissions and the project emissions and calculated as follows:

 $ER_p = RE_p - PE_p$

I. Data and parameters fixed *ex ante*

Parameter	Description of data	Sources
Performance	Fixed ex-ante:	By using pump
curve of	$P_{REF,LF,p} = -0.2641 * LF^3 + 0.5108 * LF^2 +$	manufacturers' test data, the
reference	0.2536*LF + 0.5150	performance curve can
pumps		evaluate efficiency of pumps
		made by different
		manufacturers. Then the
		reference pump that has the
		lowest emission level was
		selected among six types of
		pumps which belong to
		Phnom Penh Water Supply
		Authority.
		The reference pump will be
		reselected every three years
		if necessary.
Performance	Fixed ex-ante:	Manufacturers' test data will
curve of	Performance curve of project pumps	be used.
project		
pumps		
<i>EC</i> _{rated}	Fixed ex-ante:	Manufacturers' designated
	Rated electricity consumption of project pumps	value will be used.
	per hour.	
EF _{grid}	Fixed ex-ante: 0.6257 tCO ₂ /MWh	Data is obtained from
	CO ₂ emission factor of a grid to which a target	Climate Change Department,
	plant is connected.	Ministry of Environment,
		Cambodia.
		This value will be updated
		each year, if necessary.

The sources of each data and parameter fixed *ex ante* are listed as below.