Joint Crediting Mechanism Project Design Document Form

A. Project description

A.1. Title of the JCM project

10MW-scale Solar Power Generation for Stable Power Supply

A.2. General description of project and applied technologies and/or measures

The proposed JCM project aims to construct a 10MW-scale solar power generation plant in Altai City, Gobi-Altai aimag. The plant will be connected to the Altai-Uliastai Regional Energy System, and will provide sustainable supply of electricity to the region in order to deal with increasing electricity demand due to mine development. The project contributes to reduction of GHG emission by replacing electricity generated from existing thermal power plants, which utilize fossil fuels including coal and diesel.

A.3. Location of project, including coordinates

Country	Mongolia	
Region/State/Province etc.:	Gobi-Altai aimag	
City/Town/Community etc:	Altai City	
Latitude, longitude	N46° 23.163' E96° 12.653'	

A.4. Name of project participants

Mongolia	• Joint venture of Unigas LLC and counterparts	
	(financed by SAISAN Co., Ltd and myclimate Japan Co., Ltd)	
Japan	• SAISAN Co., Ltd	
	• myclimate Japan Co., Ltd	

A.5. Duration

Starting date of project operation	October 2016
Expected operational lifetime of project	20 years

A.6. Contribution from developed countries

Contribution from Japan is as follows.

1. Introduction of Japanese technology

The technology of solar power generation, in which Japan is globally competitive, is introduced in the project. In order to assist sustainable development of solar power generation in Mongolia, technology transfer is conducted through training seminar. This training seminar includes inspection on solar power plants in Japan and information exchange with related Japanese governmental entities.

2. Financial support from Japan

Financial support for the project is provided by Japanese entities, including project participants, Japanese banks and through the JCM financing program.

The abovementioned contribution from Japan intends to improve energy supply in Mongolia to a more sustainable one, as well as to deal with air pollution caused by coal burning in thermal power plants and households. Apart from the improvement of air quality, cost effect such as job creation is also expected.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies) Selected approved methodology No.

Version number

Eligibility	Descriptions specified in the	Project information	
criteria	methodology		
Criterion 1	The project activity is generation of	In this project, a 10MW-scale solar	
	mega-solar scale power (more than	power generation system will be	
	or equal to 1MW output) in	installed in Gobi-Altai aimag, Mongolia.	
	Mongolia.	Therefore, the project meets this	
		criterion.	
Criterion 2	The project activity is the	In this project, a new solar power system	
	installation of a new solar power	will be newly installed at a site where no	
	generation system at a site where	solar power system has existed	
	there has been no mega-solar scale	previously. Therefore, the project meets	
	power generation system, or	this criterion.	
	capacity addition to the existing		
	solar power generation system.		
Criterion 3	The electricity generated by the	In this project, the electricity generated	
	project will be supplied to	will be supplied to Altai-Uliastai	
	Altai-Uliastai Regional Energy	Regional Energy System in Mongolia to	
	System in Mongolia to replace	replace electricity generated by existing	
	existing electricity generation.	thermal power plants. Also, auxiliary	

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

		1
	Auxiliary electricity consumption	electricity consumption by the project is
	by the project, if there is any, will	supplied from Altai-Uliastai Energy
	be supplied from Altai-Uliastai	System. Therefore, the project meets this
	Energy System.	criterion.
Criterion 4	The solar power generation system	In this project, net electricity supplied to
	installed in the project measures	the grid is measured. Therefore, the
	net electricity supplied to the grid.	project meets this criterion.
Criterion 5	The solar cells in the system have	In this project, the solar cells have
	obtained: (i) a certification of	obtained design qualification (IEC
	design qualifications and safety	61215) and safety qualification for
	qualification set by the IEC	construction (IEC 61730). Therefore, the
	(International Electrotechnical	project meets this criterion.
	Commission), and/or (ii) have	
	obtained any other national	
	certifications that are fully conform	
	with the IEC.	
	The qualifications set by the IEC	
	referred are as follows:	
	- Design qualification and type	
	approval: IEC 61215 (silicon), IEC	
	61646 (thin-film) , and IEC 62108	
	(CPV)	
	- Safety qualification: IEC 61730-1	
	(construction) and IEC 61730-2	
	(testing)	
Criterion 6	The solar power generation system	In this project, power conditioners with
	installed in the project includes	conversion efficiency of 98.6% is
	power conditioner(s) with	installed. Therefore, the project meets
	minimum conversion efficiency of	this criterion.
	98%.	
Criterion 7	The solar power generation system	In this project, a remote monitoring
	installed in the project is equipped	system is installed. Therefore, the project
	with remote monitoring system.	meets this criterion.
	The remote monitoring system	
	emits warning in the event of	
	operation failure, etc. The project	
		1

owner/participant located in the	
distance receives warning remotely	
and can quickly attend to the issues	
for trouble-shooting and recovery.	

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions	
Emission sources	GHG type
CO ₂ emissions from electricity generation in fossil fuel intensive grid electricity system that are displaced due to project activity.	CO_2
Project emissions	
Emission sources	GHG type
CO ₂ emissions from electricity consumption from the grid on site due to project activity.	CO_2

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

Reference scenario is displacement of electricity in the grid by renewable energy generated by the project. Reference emissions will be calculated by the product of amount of electricity supplied to the grid and the emission factor of the grid. Fig. 1 shows electrical connection diagram of PV plant, with monitoring point indicated in red.

Ś

Year	Estimated	Reference	Estimated	Project	Estimated Emission
	emissions (tCC) ₂)	Emissions (tCO ₂)		Reductions (tCO ₂)
2014		0		0	0
2015		0		0	0
2016		6,364		21	6,343
2017		12,728		41	12,687
2018		12,728		41	12,687
2019		12,728		41	12,687
2020		12,728		41	12,687
Total		57 076		105	57.001
(tCO ₂)		57,276		185	57,091

D. Environmental impact assessment

Legal requirement of environmental impact assessment for the proposed project

the proposed project

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

Local stakeholders of the project and the need of consultation are as follows.

1. Local residents

Local residents who are likely to be affected by the construction of the project. Since this project is located far from residential areas, it is concluded that the construction of the project will not affect the local residents. In addition, the implementation plan of the project has been shared to the local residents during a local council meeting, as summarized in the "Altai Aimag" section below. Hence, consultation of local residents is not necessary.

Yes

2. Altai Airport

Local facility which is located next to the project site. A hearing survey is conducted with the head of local land authority (which is under the jurisdiction of Altai Aimag), and comments are summarized in the "Altai Aimag" section below.

3. Altai-Uliastai Regional Energy System

Local administrator and counterpart of grid connection of the project. A hearing survey is conducted with the president of the company, and comments are summarized in the "Altai-Uliastai Regional Energy System" section below.

4. Altai Aimag

Local administrator in charge of the aimag where the project site is located. A hearing survey is conducted with the governor and deputy governors, and comments are summarized in the "Altai Aimag" section below.

5. Ministry of Energy

Central bureaucracy in charge of power generation businesses. Since the implementation of this project is specifically requested by the Ministry of Energy, full support is provided by the Ministry.

Stakeholders	Comments received	Consideration of
		comments received
Altai Aimag	(Comments from Mr. Batsaikhan D. and Mr.	No action is needed.
	Chinzorig D., deputy governors of Altai aimag)	
	• There are various challenges in Altai aimag	
	regarding power supply, including (1) insufficient	
	power supply from Taishir hydropower plant due	
	to water shortage, (2) instability in power	
	imported from Russia through Western Energy	
	System (import amount is decided based on the	
	discretion of Russian government), (3) difficulties	
	in securing diesel fuel for diesel power plants.	
	Such restrictions in power supply are one of the	
	factors causing delay in the economic	
	development of Altai aimag. The implementation	
	of this project is favorable to the aimag.	
	Therefore, Altai aimag will provide full support	
	for the realization of the project.	
	• Local residents have been informed of the	
	implementation plan of the project during a local	
	council meeting.	
	(Comments from head of local land authority of Altai	No action is needed.
	aimag)	
	• (In response to possible effects on flights to and	
	from Altai Airport which are caused by the	
	project, including sunlight reflection on solar	

E.2. Summary of comments received and their consideration

-		1
	panels) The project site is located more than	
	500m from Altai Airport. Therefore, there are no	
	significant concerns on the location of the project	
	in relation to the airport.	
	(Comments from Mr. Amgalanbaatar, governor of	The project site is
	Altai aimag)	relocated from Taishir
	• It is requested that the project site is relocated	to Altai City.
	from Taishir (location determined during JCM	
	Feasibility Study in the previous year) to Aitai	
	City. Altai City is cheaper in terms of	
	maintenance cost of the project, due to its	
	relatively convenient location. Also, construction	
	of the project near Altai City aids in the	
	promotion of the image of the city.	
Altai-Uliastai	(Comments from Mr. Chinbat, president of	No action is needed.
Regional	Altai-Uliastai Regional Energy System)	
Energy System	• Altai-Uliastai Regional Energy System (AUES)	
	supports those with assurances on the realization	
	of their project. The project participants has	
	continued visiting Altai aimag this year, as	
	promised during JCM Feasibility Study in the	
	previous year. Therefore, AUES firmly trusts the	
	participants.	
	• In the future, electricity demand in Altai City is	
	expected to increase due to mines and factory	
	development. However, planned electricity supply	
	remains low at 6MW. The implementation of this	
	project will not only aid in reducing the amount	
	of electricity purchased from CES and WES, but	
	also supplement the shortage of electricity supply	
	by Taishir hydropower plant.	

F. References

- Law of Mongolia on Renewable Energy (2007)
- Law on Environmental Impact Assessment (2012)

Reference lists to support descriptions in the PDD, if any.

Annex

1. Calculation of Reference Emissions

RE_p	$= EG_{REF,p}$	$\times EF_{CO2,grid,p}$
--------	----------------	--------------------------

Parameter	Description	
RE_p	Reference emissions in period p (tCO_2/p)	
$EG_{REF,p}$	Amount of net electricity supplied by the project to the grid (MWh/p)	
$EF_{CO2,grid,p}$	Emission factor of the grid electricity displaced by the project (tCO ₂ /MWh)	

2. Calculation of Project Emissions

$PE_p = EC_{AUX,p}$	$\times EF_{CO2,grid,p}$
---------------------	--------------------------

Parameter	Description	
PE_p	Project emissions in period p (tCO ₂ /p)	
$EC_{AUX,p}$	Amount of the grid electricity consumed by the project (MWh/p)	
$EF_{CO2,grid,p}$	Emission factor of the grid electricity consumed by the project (tCO ₂ /MWh)	

3. Calculation of Emission Reduction

 $ER_p = RE_p - PE_p$ ParameterDescription ER_p Emission Reduction in period p (tCO₂/p) RE_p Reference emissions in period p (tCO₂/p) PE_p Project emissions in period p (tCO₂/p)

Revision history of PDD				
Version	Date	Contents revised		