JCM_MN_F_PM_ver01.0 JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM. JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of the Union of Myanmar
Name of the methodology proponents	Nikken Sekkei Civil Engineering Ltd., The Japan
submitting this form	Research Institute Ltd., Kubota Corporation
Sectoral scope(s) to which the Proposed	13. Waste Handling and Disposal
Methodology applies	
Title of the proposed methodology, and	Methane recovery from organic effluent through
version number	controlled anaerobic digestion and its use for
	energy in Myanmar
	Version number: V1.0
List of documents to be attached to this form	The attached draft JCM-PDD
(please check):	Additional information
Date of completion	2 March, 2015

History of the proposed methodology

Version	Date	Contents revised
1.0	9 October 2014	

A. Title of the methodology

Methane recovery from organic effluent through controlled anaerobic digestion and its use for energy in Myanmar

B. Terms and definitions

Terms	Definitions
Anaerobic digester	Equipment that is used to generate heat from liquid or solid
	waste through anaerobic digestion. The digester is covered or
	encapsulated to enable biogas capture for its use of energy.
Anaerobic digestion	Degradation and stabilization of organic materials by the action
	of anaerobic bacteria that result in production of methane and
	carbon dioxide. Typical organic materials that undergo
	anaerobic digestion are municipal solid waste (MSW), animal
	manure, wastewater and organic industrial effluent, and
	biosolids produced by effluent treatment facility under aerobic
	condition.
Biogas	Gas generated from an anaerobic digester. Typically, the
	composition of the gas is 50 to 70% CH_4 and 30 to 50% CO_2 ,
	with traces of H_2S and NH_3 (1 to 5%).
Wet thermophilic	A method of methane fermentation with below 10%
fermentation	concentration of solids and thermophilic (50 to 55 degree
	Celsius) condition.
Anaerobic membrane	Membrane used for anaerobic digestion, which encourages
	stability of fermentation by keeping anaerobic bacteria in high
	concentration.

C. Summary of the methodology

Items	Summary
GHG emission reduction	This methodology comprises measures to avoid the emissions of
measures	methane to the atmosphere from organic waste that would have
	otherwise been left to decay anaerobically in a plant and
	introduces renewable energy technologies that supply users with
	electricity and heat that displaces fossil fuel use.
Calculation of reference	The reference scenario is the situation where, in the absence of
emissions	the project activity, organic effluent is left to decay in a plant
	and methane is emitted to the atmosphere. The reference
	emission is calculated by adding the followings.
	1. Emissions on the basis of the amount of methane emitted
	from the decay of degradable organic carbon in the organic
	effluent.
	2. Emissions on the basis of the electricity and/or fossil fuel
	consumption that would have been used in the absence of the
	project activity, times emission factor for the electricity and /or
	fossil fuel displaced.
Calculation of project	Project emissions are calculated by adding the followings.
emissions	1. Project CH ₄ emissions from effluent treatment system without
	biogas plant, affected by the project activity.
	2. Project CH ₄ emissions from effluent discharged into sea, river
	or lake.
	3. CO ₂ emissions from electricity and/or fossil fuel used by the
	project activity.
Monitoring parameters	1. Volume of wastewater treated in an anaerobic digester.
	2. Amount of COD in the wastewater flows in to the anaerobic
	digester.
	3. Amount of FFB prior to the project operating.
	4. Amount of biogas generated by an anaerobic digester and
	electricity generated from this gas.

D. Eligibility criteria

This methodology is applicable to projects that meet all of the following criteria.

Criteria 1	Anaerobic digesters and system that is fuelled by the biogas are to be installed.
Criteria 2	The materials to be fed into the anaerobic digesters are organic waste including
	septage that would have been disposed at a landfill site in the absence of the
	project activity.
Criteria 3	Anaerobic digester for wet thermophilic fermentation (50 to 55 degree Celsius)
	is to be installed.
Criteria 4	Anaerobic digester which has anaerobic membrane is to be installed.
Criteria 5	The project secures organic waste as the materials of the project activity and has
	a proper maintenance system that outlines a maintenance plan and equipment for
	monitoring activities.

E. Emissions Sources and GHG types

Reference emissions		
Emissions sources	GHG types	
Methane emissions from effluent in the absence of the project activity	CH ₄	
Fossil fuel consumption in the absence of the project activity	CO ₂	
Grid electricity consumption in the absence of the project activity	CO ₂	
Project emissions		
Emission sources GHG types		
Methane emissions from effluent in treatment system without anaerobic	CH ₄	
digester		
Fossil fuel consumption by product activity	CO ₂	
Grid electricity consumption by product activity	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated from the amount of CH_4 emissions from wastewater that is left to decay anaerobically, and CO_2 emissions from consumption of the electricity and/ or fossil fuel.

$RE_{y} = RE_{treatment,y} + RE_{discharge,y} + RE_{power}$		
RE_y	Reference emissions in year y (tCO ₂ e)	
RE treatment, y	CH ₄ emissions from reference wastewater in year y (tCO ₂ e) (R1)	
$RE_{discharge,y}$	CH4 emissions from effluent discharged into sea, river or lake in year y	
	(tCO_2e) (R2)	
$RE_{power,y}$	CO ₂ emissions from consumption of electricity and/or fossi	l fuel in year y
	(tCO_2e) (R3)	
$RE_{treatment,y} = \sum_{i \in Q_{y}} Q_{y}$ GWP_{CH4}	y* (COD _{inflow,i,RS} — COD _{outflow,i,RS}) /1,000,000 * MCF _{treatment,RS,i} }	* <i>B</i> _{0,ww} * <i>UF</i> _{RS} *
Q_{v}	Volume of wastewater treated in year y (m^3)	
$COD_{inflow, i, RS}$	Concentration of COD in the wastewater flows in to the s	system i in the
	reference scenario (mg/L)	
COD _{outflow,i,RS}	Concentration of COD in the wastewater flows out from the	system i in the
	reference scenario (mg/L)	
MCF _{treatment,RS,i}	CH4 correction factor for reference wastewater treatment systems i	
	Methane correction factor	
	Type of treatment system	MCF
	Discharged into the sea, river and lake	0.1
	Treated in a well-managed aerobic situation	0.0
	Treated in a unwell-managed aerobic situation	0.3
	Anaerobic reactor, which does not collect methane	0.8
	Anaerobic shallow lagoon (Depth less than 2 metres)	0.2
	Anaerobic deep lagoon (Depth more than 2 metres)	0.8
	Latrine tank	0.5
B _{o,ww}		
UF_{RS}	CH ₄ producing capacity of the wastewater (t-CH ₄ /t–COD)	
GWP_{CH4}	Model correction factor to account for model uncertainties	
O = O	Global warming Potential for CH ₄	
$Q_y - Q_{y,measure}$	Case of Option 1 or Option 2	
$\mathcal{Q}_{y,measure}$	and operation time etc. in year y (m^3)	
$O_{v} = \alpha_{RS} * P_{v} * f_{O}$	Case of Option 3 or Option 4	
$\alpha_{RS} = O_{RS} / P_{RS}$		
End End End		

F.2. Calculation of reference emissions

$JCM_MN_F_PM_ver01.0$

f_Q	Model correction factor
α_{RS}	Amount of POME per FFB in the reference scenario (m ³)
Q_{RS}	Amount of POME in the reference scenario (m ³)
P_{RS}	Amount of FFB used in the reference scenario (mt)
P_y	Amount of FFB used in year y (mt)
$RE_{discharge,y} = Q_y * G$	WP _{CH4} * B _{o,ww} * UF _{RS} * COD _{discharge,RS} / 1,000,000 * MCF _{discharge,RS}
Q_y	Volume of wastewater treated in year y (m ³)
GWP_{CH4}	Global Warming Potential for CH ₄
$B_{o,ww}$	CH ₄ producing capacity of the wastewater (t-CH ₄ /t-COD)
UF_{RS}	Model correction factor to account for model
COD _{discharge,RS}	Concentration of COD discharged into sea, river or lake in the reference
	scenario
$MCF_{discharge,RS}$	CH ₄ correction factor for discharged effluent in the reference scenario
$RE_{power,y} = RE_{electricity}$	$y_{y,y} + RE_{thermal,y}$
$RE_{electricity,y}$	CO 2 emissions from consumption of electricity in the reference scenario
	(tCO ₂ e)
$RE_{thermal,y}$	CO ₂ emissions from consumption of fossil fuel (tCO ₂ e)
$RE_{electricity,y} = EG_{net,electricity,y}$	$cctricity, PJ, y^* EF_{electricity}$
$EG_{net,electricity,PJ,y}$	Electricity consumed by the activity in year y
$EF_{electricity}$	CO ₂ emissions factor of electricity (tCO ₂ e/MWh)
$RE_{thermal,y} = EG_{net,ther}$	$mal, PJ, y * EF_{FF, RS}$
$EG_{net,thermal,PJ,y}$	Calorific value of fossil fuel in year y (TJ)
$EF_{FF,RS}$	CO ₂ emissions factor of fossil fuel (tCO ₂ /TJ)
G. Calculation of	project emissions
$PE_y = PE_{treatment,y} +$	$PE_{discharge,y} + PE_{power,y}$
PE_y	Project emissions during in year y (tCO ₂ e)
$PE_{treatment,y}$	Project CH ₄ emissions from effluent treatment system without biogas plant,
	affected by the project activity (tCO ₂ e) (P-1)
$PE_{discharge,y}$	Project CH ₄ emissions from effluent discharged into sea, river or lake
	(tCO_2e) (P-2)
$PE_{power,y}$	CO ₂ emissions from electricity and/or fossil fuel used by the project activity
	(tCO_2e) (P-3)
$PE_{treatment,y} = \sum_{i} \{ Q_y * \triangle COD_{i,y}/1,000,000 * MCF_{treatment,PJ,i} \} * B_{o,ww} * UF_{PJ} * GWP_{CH4} \}$	

Q_y	Volume of wastewater treated in year y (m ³)
$\triangle COD_{i,y}$	The amount of COD removed in the wastewater in the system i in year y
	(mg/L)
MCF _{treatment,PJ,i}	CH ₄ correction factor for project wastewater treatment
$B_{o,ww}$	CH ₄ producing capacity of the wastewater (t-CH ₄ /t-COD)
UF_{PJ}	Model correction factor
GWP _{CH4}	Global Warming Potential of methane

Option1 or Option3

 $\angle COD_{i,y} = COD_{inflow,i,measure} - COD_{outflow,i,measure}$

Option2 or Option4

 $\Delta COD_{i,y} = COD_{inflow,i,PJ,dsign} * RR_{i,RS} * f_{COD}$

 $RR_{i,RS} = (COD_{inflow,i,RS} - COD_{outflow,i,RS}) / COD_{inflow,i,RS}$

COD _{inflow,i,measure}	Concentration of COD in POME flows in to the treatment system in year y	
	(mg/L)	
$COD_{outflow,i,measure}$	Concentration of COD in POME flows out from the treatment system in	
	year y (mg/L)	
COD _{inflow,i,PJ,dsign}	Designed value of concentration of COD in POME flows in to the treatment	
	system in year y (mg/L)	
$RR_{i,RS}$	COD removal ratio of treatment system i in the reference scenario	
COD _{inflow, i, RS}	Concentration of COD in the wastewater flows in to the system i in the	
	reference scenario (mg/L)	
$COD_{outflow, i, RS}$	Concentration of COD in the wastewater flows out from the system i in the	
	reference scenario (mg/L)	
fcod	Model correction factor	
$PE_{discharge,y} = Q_{ww,y} * GWP_{CH4} * B_{o,ww} * UF_{PJ} * COD_{discharge,PJ,y} / 1,000,000 * MCF_{discharge,PJ}$		
$Q_{\scriptscriptstyle WW,y}$	Amount of effluent treated in the system in year y (m ³)	
GWP_{CH4}	Global Warming Potential of methane	
$B_{o,ww}$	CH ₄ producing capacity of the wastewater	
UF_{PJ}	Model correction factor	
$COD_{discharge,PJ,y}$	Concentration of COD in the treated wastewater discharged into sea, river	
	or lake in year y (mg/L)	
$MCF_{discharge,PJ}$	CH ₄ correction factor based on discharge pathway	
Option1 or Option3		
Option1 or Option2	3	

Option2 or Option4		
$COD_{discharge,PJ,y} = COD_{discharge,PJ,dsign} * f_{COD}$		
$COD_{discharge,measure}$	Concentration of COD, which is measured, in the treated wastewater	
	discharged into sea, river or lake in year y (mg/L)	
$COD_{discharge,PJ,dsign}$	Concentration of COD, which is designed, in the treated wastewater	
	discharged into sea, river or lake in year y (mg/L)	
f_{COD}	Model correction factor	
$PE_{power,y} = EG_{FF,PJ,y} * EF_{FF,PJ,y}$		
$PE_{power,y}$	CO ₂ emissions from electricity and fuel used by the project facilities	
$EG_{FF,PJ,y}$	Project energy consumption (Electricity)	
$EF_{FF,PJ,y}$	CO ₂ emissions factor of Electricity	

H. Calculation of emissions reductions

ER_y	$= RE_y - PE_y$	
ER_{y}		GHG emission reductions in year y (tCO ₂ e)
RE_y		Reference emissions in year y (tCO ₂ e)
PE_y		Project emissions in year y (tCO ₂ e)

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
COD _{inflow, i, RS}	Concentration of COD in POME flows in to the	monitored data
	treatment system in the reference scenario	
	(mg/L)	
COD _{outflow,i,RS}	Concentration of COD in POME flows out from	monitored data
	the treatment system in the reference scenario	
	(mg/L)	
MCF _{treatment,RS,i}	CH4 correction factor for reference wastewater	IPCC2006 Guideline
Bo,ww	CH ₄ producing capacity of the wastewater (t-CH	IPCC2006 Guideline
	4/t-COD)	
UF_{RS}	Model correction factor to account for model	SBSTA 2003
GWP _{CH4}	Global Warming Potential for CH ₄	IPCC Fourth
		Assessment Report:
		Climate Change 2007

f_Q	Model correction factor to account for model	Set based on "IPCC
		Good Practice Guidance
		and Uncertainty
		Management in
		National Greenhouse
		Gas Inventories"
Q_{RS}	Amount of POME in the reference scenario	monitored data
P_{RS}	Amount of FFB used in the reference scenario	monitored data
COD _{discharge,RS}	Concentration of COD in POME discharged into	monitored data
	sea, river or lake in the reference scenario (mg/L)	
$MCF_{discharge,RS}$	CH ₄ correction factor for reference wastewater	IPCC2006 Guideline
EFelectricity	CO ₂ emissions factor of electricity (tCO ₂ /MWh)	Each of regulatory
		value set by the
		government of
		Myanmar, result of the
		calculation in the
		project conducted in the
		past, or result of
		original calculation
$EF_{FF,RS}$	CO ₂ emissions factor of diesel (tCO ₂ /TJ)	Regulatory value set by
		the government of
		Myanmar
MCF _{treatment,RS,i}	CH ₄ correction factor for reference wastewater	IPCC2006 Guideline
UF_{PJ}	Model correction factor to account for model	SBSTA 2003
fcod	Model correction factor to account for model	Set based on "IPCC
		Good Practice Guidance
		and Uncertainty
		Management in
		National Greenhouse
		Gas Inventories"