JCM_MM_F_PM_ver01.0 JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM. JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of the Union of Myanmar
Name of the methodology proponents	JFE Engineering Corporation
submitting this form	
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable - /
Methodology applies	non-renewable sources)
	13. Waste handling and disposal
Title of the proposed methodology, and	Power generation and avoidance of landfill gas
version number	emissions through combustion of municipal solid
	waste (MSW)
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
Date of completion	26/02/2015

History of the proposed methodology

Version	Date	Contents revised
01.0	26/02/2015	First edition

A. Title of the methodology

Power generation and avoidance of landfill gas emissions through combustion of municipal solid waste (MSW)

B. Terms and definitions

Terms	Definitions		
Municipal solid waste (MSW)	A heterogeneous mix of different solid waste types, usually		
	collected by municipalities or other local authorities. MSW		
	includes household waste, garden/park waste and		
	commercial/institutional waste.		
Solid waste disposal site	Designated areas intended as the final storage place for solid		
(SWDS)	waste.		
Fresh waste	Solid waste that is intended for disposal in a SWDS but has		
	not yet been disposed. This may comprise MSW and		
	excludes old waste and hazardous waste.		

C. Summary of the methodology

Items		Summary
GHG emission	reduction	Installation of MSW incinerators avoids emissions of CH ₄
measures		associated with disposing organic waste in a SWDS and the
		project facility displaces electricity from a grid or captive power
		generator which is generated using fossil fuels resulting in GHG
		emission reductions.
Calculation of	reference	The BaU treatment of the MSW is considered to be open
emissions		dumping, however, a discount factor is multiplied to BaU
		emissions for assuring conservativeness. Reference emissions
		are calculated by multiplying a discount factor and a sum of the
		following emissions:
		• CH ₄ emissions from SWDS: Calculated from the amount of
		MSW and fraction of each waste type incinerated in the
		incinerator using the first order decay (FOD) model; and

	• CO_2 emissions from a grid or captive power generator:	
	Gross electricity generated by the project facility multiplied	
	by the emission factor of displaced electricity.	
Calculation of project	Project emissions are calculated as a sum of the following	
emissions	emissions:	
	• CO ₂ emissions from combustion of fossil carbon contained	
	in MSW: The amount of MSW multiplied by fraction of	
	fossil carbon content and the conversion factor of carbon;	
	• N ₂ O emissions from combustion of waste: The amount of	
	MSW multiplied by the N ₂ O emission factor associated	
	with incineration;	
	• CO ₂ emissions from electricity used to operate the project	
	facility: Electricity used to operate the project facility	
	multiplied by the emission factor of electricity; and	
	• CO_2 emissions from auxiliary fossil fuel consumption	
	associated with incineration: The amount of fossil fuel	
	consumption associated with incineration multiplied by the	
	emission factor of the fossil fuel.	
Monitoring parameters	• Amount of waste (wet basis);	
	• Fraction of each waste type (wet basis);	
	• Gross electricity generated and sold by the project facility;	
	• Gross electricity purchased by the project facility; and	
	• Quantity of auxiliary fossil fuel consumption.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project newly installs an incinerator, waste heat recovery boiler, exhaust gas
	treatment equipment and turbine generator.
Criterion 2	The project incinerates fresh municipal solid waste and generates electricity from
	steam produced in a boiler which uses heat of incineration.
Criterion 3	The project facility is constructed within the municipality where waste to be
	incinerated by the project is generated.
Criterion 4	The fraction of energy generated by auxiliary fossil fuels in a construction design
	document is planned to be not more than 50 % of the total energy generated in
	the incinerator during normal operation.

Criterion 5	Electricity generated is exported to a grid or used for displacing captive fossil
	fuel fired power generator.
Criterion 6	Emissions of NO ₂ and CO at the stack of incinerator are designed to be less than or equal to the following levels: NO ₂ ($230mg/m^3@11\%O_2$) and CO ($42mg/m^3@11\%O_2$)

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Decomposition of waste at SWDS	CH ₄	
Electricity generation	CO ₂	
Project emissions		
Emission sources	GHG types	
Incineration of fossil based waste	CO ₂	
Incineration of waste	N ₂ O	
On-site electricity use	CO ₂	
Consumption of auxiliary fossil fuels needed to be added into	CO ₂	
incinerator		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

A project that applies this methodology incinerates MSW and generates electricity. In Myanmar, MSW has been disposed in open dump sites. Although some initiatives exist to treat waste with alternative methods such as incinerating MSW, the cost of alternative treatment of waste hampers the actual installation, therefore, without the financial assistance the alternative waste

treatment facility would not be installed. As a result, BaU for waste treatment is open dumping and BaU emissions are CH_4 emissions from open dumping of MSW and CO_2 emissions from fossil fuels fired to generate electricity which would be displaced by the project. To estimate reference emissions conservatively, calculated BaU emissions are multiplied by a discount factor to account for the waste treatment status.

F.2. Calculation of reference emissions

 $RE_p = (RE_{CH4,p} + RE_{elec,p}) \times DF_{RATE}$ Where: RE_p = Reference emissions during the period p (tCO₂e/p) = Reference emissions from decomposition of waste at the SWDS during the RE_{CH4.p} period p (tCO₂e/p) = Reference emissions from electricity generation during the period p (tCO₂e/p) RE_{elec.p} DFRATE = Discount factor $DF_{RATE} = 1 - RATE$ Where: DF_{RATE} = Discount factor RATE = Ratio of the amount of intermediately treated waste to the amount of all waste generated in the municipality where waste to be incinerated by the project is generated (weight fraction) $RE_{CH4,p} = \sum_{m=p, \text{ start}}^{p_end} \left\{ \phi \times (1-f) \cdot GWP_{CH4} \cdot (1-OX) \cdot \frac{16}{12} \cdot F \cdot DOC_f \cdot MCF \right\}$ $\cdot \sum_{i=1}^{m} \sum_{i} W_{j,i} \cdot \text{DOC}_{j} \cdot e^{-\frac{k_{j}}{12}(m-i)} \cdot \left(1 - e^{-\frac{k_{j}}{12}}\right) \right\}$ Where: = Reference emissions from decomposition of waste at the SWDS during the RE_{CH4,p} period p (tCO₂e/p) = Month in the period p for which methane emissions are calculated m = The first month in the period p for which methane emissions are calculated p_start p_end = The last month in the period p for which methane emissions are calculated i = Months in the time period in which waste is disposed at the SWDS, extending from the first month in the time period (i = 1) to month m (i = m)

φ	=	Model correction factor to account for model uncertainties
f	=	Fraction of methane captured at the SWDS and flared, combusted or used in
		another manner that prevents the emissions of methane to the atmosphere
GWP _{CH4}	=	Global Warming Potential of methane (tCO ₂ e/tCH ₄)
OX	=	Oxidation factor (reflecting the amount of methane from SWDS that is oxidized
		in the soil or other material covering the waste)
F	=	Fraction of methane in the SWDS gas (volume fraction)
DOC _f	=	Fraction of degradable organic carbon (DOC) that decomposes under the
		specific conditions occurring in the SWDS (weight fraction)
MCF	=	Methane correction factor
W _{j,i}	=	Quantity of waste type j fed into incinerator in month i (t)
DOCj	=	Fraction of degradable organic carbon in the waste type j (weight fraction)
k _j	=	Decay rate for the waste type j (1/yr)
j	=	Type of waste
XA7 XA7 .	$\sum_{i=1}^{3}$	$a_{n=1}^{3} p_{n,j,i}$
$W_{j,i} = W_i >$	< —	3
Where:		
W _{j,i}	=	Quantity of waste type j fed into incinerator in month i (t)
Wi	=	Quantity of waste fed into incinerator in month i (t)
p _{n,j,i}	=	Fraction of the waste type j in the sample n collected during three consecutive
		months including month <i>i</i> (weight fraction)
n	=	Three samples collected during three consecutive months including month i
j	=	Type of waste
i	=	Months in the time period in which waste is fed into the incinerator, extending
		from the first month in the time period $(i=1)$ to month m $(i=m)$
m	=	Months of the period p for which methane emissions are calculated
$RE_{elec,p} =$	EGe	$_{\rm elec,p} \times \rm EF_{\rm elec}$
Where:		
RE _{elec,p}	=	Reference emissions from electricity generation during the period p (tCO ₂ e/p)
EG _{elec,p}	=	Gross electricity generated and sold by the project facility during the period p
		(MWh/p)
EF _{elec}	=	Emission factor for electricity generation (tCO ₂ e/MWh)

G. Calculation of project emissions

$PE_p = PE_{CC}$	DM_	$_{CO2,p} + PE_{COM_N2O,p} + PE_{EC,p} + PE_{FC,p}$
Where:		
PEp	=	Project emissions during the period p (tCO ₂ e/p)
PE _{COM_CO2,J}	p =	Project emissions of CO ₂ from combustion of fossil waste associated with
		incineration during the period p (tCO ₂ e/p)
PE _{COM_N2O} ,	р =	Project emissions of N ₂ O from combustion of waste associated with
		incineration during the period p (tCO ₂ e/p)
PE _{EC,p}	=	Project emissions from electricity consumption by the project facility during the
		period p (tCO ₂ e/p)
PE _{FC,p}	=	Project emissions from fossil fuel consumption associated with incineration
		during the period p (tCO ₂ e/p)
PF	_	$FFF_{aver} \times \frac{44}{4} \times \sum W_{aver} \times (1 - WC) \times FCC_{aver} \times FFC_{aver}$
¹ ^L COM_CO2,]	p —	$12 \stackrel{1}{\sim} \frac{1}{j} \stackrel{1}{\sim} \frac$
Where:		
PE _{COM_CO2,J}	_р =	Project emissions of CO_2 from combustion of fossil waste associated with
		incineration during the period p (tCO ₂ e/p)
ЕFF _{COM}	=	Combustion efficiency of incinerator (fraction)
$\frac{44}{12}$	=	Conversion factor (tCO_2/tC)
W _{j,p}	=	Quantity of waste type j fed into incinerator during the period p (t/p)
WC	=	Water content of waste (%)
FCCj	=	Fraction of total carbon content in waste type j (% dry waste)
FFCj	=	Fraction of fossil carbon in total carbon content of waste type j (weight
ŗ		fraction)
$W_{j,p} = \sum_{\cdot}^m \Big($	Wi	$\times \frac{\sum_{n=1}^{3} p_{n,j,i}}{3}$
Where:		
W _{j,p}	=	Quantity of waste type j fed into incinerator during the period p (t/p)
W _i	=	Quantity of waste fed into incinerator in month i (t)
p _{n,j,i}	=	Fraction of waste type j in the sample n collected during three consecutive
		months including month <i>i</i> (weight fraction)
n	=	Three samples collected during three consecutive months including month <i>i</i>
j	=	Type of waste

i = Months in the time period in which waste is fed into the	ne incinerator, extending
from the first month in the time period $(i=1)$ to month m	(<i>i</i> =m)
m = Months of the period p for which methane emissions are	calculated
$PE_{COM_N2O,p} = W_i \times EF_{N2O} \times GWP_{N2O}$	
Where:	
$PE_{COM_N2O,p}$ =Project emissions of N ₂ O from combustion of	waste associated with
incineration during the period p (tCO ₂ e/p)	
W_i =Quantity of waste fed into incinerator in month <i>i</i> (t)	
EF_{N2O} =Emission factor for N ₂ O associated with incineration (tN	J_2O/t waste)
$GWP_{N2O} = Global Warming Potential of nitrous oxide (tCO_2e/tN_2O)$)
$PE_{EC,p} = EC_p \times EF_{elec}$	
Where:	
$PE_{EC,p}$ = Project emissions from electricity consumption by the p	roject facility during the
period p (tCO ₂ e/p)	
EC_p = Gross electricity purchased by the project facility during	g the period p (MWh/p)
EF_{elec} = Emission factor for electricity generation (tCO ₂ e/MWh)	
$PE_{FC,p} = \sum FC_{fuel,p} \times NCV_{fuel} \times EF_{CO2,fuel}$	
fuel	
Where:	
$PE_{FC,p}$ = Project emissions from fossil fuel consumption assoc	ciated with incineration
during the period p (tCO ₂ e/p)	
$FC_{fuel,p}$ = Quantity of fuel combusted during the period p (kL or m	1 ³ /p)
NCV_{diesel} = Net calorific value of fuel (GJ/kL or m ³)	
$EF_{CO2,fuel}$ = Weighted average CO ₂ emission factor of fuel (tCO ₂ /GJ)
fuel = Type of fuel	

H. Calculation of emissions reductions

$ER_p = RE_p$	$_{\rm p} - {\rm PE}_{\rm p}$
Where:	
ERp	= Emission reductions during the period p (tCO ₂ e/p)
REp	= Reference emissions during the period p (tCO ₂ e/p)

En	=	Project	emissions	during	the	period	р	(tCO ₂ e/p))
⊔р	_	Tiojeet	chillissions	uuring	une	penou	P	$(100_20/p)$	/

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Paramete	Description of data	Source
r		
RATE	Ratio of the amount of intermediately treated waste	Data or information provided
	to the amount of all waste generated in the	from the municipality
	municipality where waste to be incinerated by the	
	project is generated (weight fraction)	
	Estimate at the time of validation or the start of	
	operation, whichever comes earlier, using data or	
	information provided from the municipality.	
φ	Model correction factor to account for model	CDM Methodological Tool
	uncertainties	"Emissions from solid waste
	Default value: 0.85	disposal sites" (Version
	The appropriate value was selected from the default	06.0.1)
	values $\varphi_{default}$ in the tool.	
f	Fraction of methane captured at the SWDS and	Decided taking into
	flared, combusted or used in another manner that	consideration the situation in
	prevents the emissions of methane to the	Myanmar
	atmosphere	
	Default value: 0	
GWP _{CH4}	Global Warming Potential of methane (tCO ₂ e/tCH ₄)	Table 2.14, of the errata to
	Default value: 25	the contribution of Working
		Group I to the Fourth
		Assessment Report of the
		IPCC
OX	Oxidation factor (reflecting the amount of methane	CDM Methodological Tool
	from SWDS that is oxidized in the soil or other	"Emissions from solid waste
	material covering the waste)	disposal sites" (Version
	Default value: 0.1	06.0.1)
F	Fraction of methane in the SWDS gas (volume	CDM Methodological Tool
	fraction)	"Emissions from solid waste

	Default value: 0.5	disposal sites" (Version
		06.0.1)
DOC _f	Fraction of degradable organic carbon (DOC) that	CDM Methodological Tool
	decomposes under the specific conditions occurring	"Emissions from solid waste
	in the SWDS (weight fraction)	disposal sites" (Version
	Default value: 0.5	06.0.1)
MCF	Methane correction factor	CDM Methodological Tool
	Select one of the followings taking into	"Emissions from solid waste
	consideration the situation of the project.	disposal sites" (Version
		06.0.1)
	(1) In Yangon City: Default value of 0.8	
	The appropriate value was selected from the default	
	values $MCF_{default}$ in the tool taking into	
	consideration the situation in Yangon City.	
	(2) In other places in Myanmar:	
	(2)-1 In case of a water table above the bottom of	
	the SWDS, estimate the MCF using the following	
	equation.	
	$MCF = MAX\left\{ \left(1 - \frac{2}{d_y}\right), \frac{h_{w,y}}{d_y} \right\}$	
	$h_{w,y}$ = Height of water table measured from the base	
	of the SWDS (m)	
	$d_y = Depth of SWDS (m)$	
	(2)-2 In case that the SWDS does not have a water	
	table above the bottom of the SWDS, select the	
	applicable value from the following:	
	• 1.0 for anaerobic managed solid waste disposal	
	sites. These have controlled placement of	
	waste (i.e. waste directed to specific deposition	
	areas, a degree of control of scavenging and a	
	degree of control of fires) and will include at	
	least one of the following: (i) cover material;	
	(ii) mechanical compacting; or (iii) leveling of	
	the waste;	
	• 0.5 for semi-aerobic managed solid waste	
	disposal sites. These have controlled placement	

	of waste and will inclu		
	structures for introduc	cing air to the waste	
	layers: (i) permeable	cover material; (ii)	
	leachate drainage sy	stem: (iii) regulating	
	pondage: and (iv) gas y	entilation system:	
	 0.8 for unmanaged soli 	id waste disposal sites-	
	deen This comprises	all SWDS not meeting	
	the criteric of monogod	SWDS and which have	
	denthe of greater than a		
	depins of greater than o	r equal to 5 meters;	
	• 0.4 for unmanaged-	shallow solid waste	
	disposal sites or stockp	iles that are considered	
	SWDS. This comprises	all SWDS not meeting	
	the criteria of managed	SWDS and which have	
	depths of less than 5	meters. This includes	
	stockpiles of solid wa	ste that are considered	
	SWDS.		
DOCj	Fraction of degradable orga	nic carbon in the waste	CDM Methodological Tool
	type <i>j</i> (weight fraction)	"Emissions from solid waste	
	Default values for <i>DOC_j</i> :	disposal sites" (Version	
	Waste type <i>j</i>	06.0.1) and Table 2.4,	
	Wood and wood products	(% wet waste)	chapter 2, volume 5 of 2006
	Pulp, paper and cardb	oard 40	IPCC guidelines
	(other than sludge)		C
	Food, food waste, bever	rages 15	
	Textiles	24	
	Garden, yard and park was	te 20	
	Nappies	24	
	Glass, plastic, metal, of inert waste	other 0	
	Sludge	5	
kj	Decay rate for the waste type	e j (1/yr)	CDM Methodological Tool
	Default values for <i>k_j</i> :	"Emissions from solid waste	
	Waste type <i>j</i>	disposal sites" (Version	
	Slowly Dulp popor	(1/yr)	06.0.1)
	degrading (other that	n sludge),	
	textiles		
	Wood, woo	d products 0.035	
	Moderately Other	(nonfood) 0.17	
	degrading organic	putrescible	

	ga	rden and park	waste		1	
	Rapidly Fo	od, food	waste,	0.40		
	degrading se	wage	sludge,			
	be	verages and to	bacco			
	The default values k_j for Tropical (Mean annual					
	temperature>20 degree C) and Wet (Mean annual					
	precipitation>1000mm) were selected taking into					
	consideration the	climate conditi	on of M	yanmar.		
EF _{elec}	Emission factor	for elect	tricity	generatio	on	For grid electricity: PDD of
	(tCO ₂ e/MWh)					the most recently registered
	Select one of	the follow	ings ta	aking in	to	CDM project hosted in
	consideration the	situation of the	project			Myanmar or the latest
	For grid electricity	: The value av	ailable	from PDD)	version of the "Tool to
	of the most recent	ly registered C	DM pro	ject hoste	d	calculate the emission factor
	in Myanmar or the	calculated va	lue usin	g the lates	t	for an electricity system"
	version of the "To	ol to calculate	the emis	ssion facto	or	under the CDM at the time of
	for an electricity s	ystem" under t	the CDN	I at the		validation
	time of validation	•				For captive electricity: CDM
	For captive electricity. The most recent value				ıe	approved small scale
	available from CDM approved small scale			le	methodology AMS-I.A.	
	methodology AMS-I.A.					
EFEcon	Combustion efficiency of incinerator (fraction)			n)	Table 5.2 chapter 5 volume	
LIICOM	Default value: 1 (100%)			,	5 of 2006 IPCC guidelines	
FCC	Eraction of total	carbon conte	nt in w	aste type	i	CDM approved consolidated
100	(tC/t)	carbon conte	III III VV	usic type	J	baseline and monitoring
		FOO				
	Default values for	FCC_j :			1	methodology ACM0022
	Waste type j		FCC	C_{i} (tC/t)	-	"Alternative waste treatment
	Paper/cardboard			50 50		processes" (Version 1.0.0)
	Food waste			50 50	-	
	Wood			50 54		
	Garden and Park	waste		55		
	Nappies			90		
	Rubber and Leat	her		67		
	Plastics			85	1	
	Metal*		1	NA	1	
	Glass*		l	NA]	
	Other, inert wast	e		5		
	*Metal and glass	Metal and glass contain some carbon of fossil			sil	
	origin. Combustion of significant amounts of glass				SS	
	or metal is not con	nmon.				
FFCj	Fraction of fossil carbon in total carbon content of			of	CDM approved consolidated	

	waste type <i>j</i> (weight fraction)			baseline and monitoring	
	Default values for <i>FFC</i> :			methodology ACM0022	
	Waste type j FFC _i (%)			"Alternative waste treatment	
	Paper/carc	lboard	5		
	Textiles		50	processes" (Version 1.0.0)	
	Food wast	æ	-		
	Wood		-		
	Garden an	d Park waste	0		
	Nappies	1.7.1	10		
	Rubber an	d Leather	20		
	Plastics Motel*		100 NA		
	Glass*		NA NA		
	Other iner	rt waste	100		
	*Metal and	l glass contain some	carbon of fossil		
	origin. Con	nbustion of significan	t amounts of glass		
	or metal is	not common.	C		
WC	Water conte	ent of waste (%)		Study conducted by the	
	Average va	lue of at least three	samples on waste	project participants	
	generated v	within the same muni	icipality where the		
	project faci	lity is to be constructe			
EF _{N20}	Emission fa	actor for N_2O associate	ed with	CDM approved consolidated	
	incineration	n (t N_2O/t waste)	baseline and monitoring		
	Select one	of the following def	methodology ACM0022		
	into conside	eration the situation of	"Alternative waste treatment		
	Default values for EF_{N2O} :			processes" (Version 1.0.0)	
	Type of	Technology /	EF _{N2O}	and Table 5.6, chapter 5,	
	waste	Management	$(tN_2O/t waste$	volume 5 of 2006 IPCC	
	MOM	practice	wet basis)		
	MSW	Continuous and	1.21*50*10*	Guidelines	
		incinerators			
	MSW	Batch-type	$1.21*60*10^{-6}$		
		incinerators			
GWP _{N20}	Global War	ming Potential of nitro	ous oxide	Table 2.14, of the errata to	
	(tCO_2e/tN_2O_2)	C)	the contribution of Working		
	Default value	ue: 298	Group I to the Fourth		
			Assessment Report of the		
			IPCC		
NCV _{fuel}	Net calorific value of fuel (GJ/kL or m ³)			Invoices or other	
	Decided from the specifications described on			commercial/contractual	
	invoices or other commercial/contractual evidence.			evidence	
EF _{CO2,fuel}	Weighted a	verage CO ₂ emission	Table 1.4, chapter 1, volume		

(tCO ₂ /GJ)		2 of 2006 IPCC Guidelines
Default values for <i>EF_{CO2,fuel}</i> :		
Fuel type <i>fuel</i>	$EF_{CO2,fuel}$	
	(tCO_2/GJ)	
Diesel	0.0748	
Gas	0.0748	
Kerosene (Other kerosene)	0.0737	
Heavy oil (Residual Fuel Oil)	0.0788	
* IPCC default value at the upper		
uncertainty at a 95% confidence in		