JCM_VN_F_PM_ver01.0 JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM. JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Vietnam		
Name of the methodology proponents	JAPAN NUS CO., LTD.		
submitting this form			
Sectoral scope(s) to which the Proposed	1. Energy Industries		
Methodology applies			
Title of the proposed methodology, and	Grid Connected Co-generation Project using		
version number	Bagasse in Sugar Factory		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion			

History of the proposed methodology

Version	Date	Contents revised	

A. Title of the methodology

Grid Connected Co-generation Project using Bagasse in Sugar Factory

B. Terms and definitions

Terms	Definitions
Bagasse	Bagasse is the fibrous matter which remains after sugarcane
	are crashed to extract their juice. It can be used as a kind of
	biomass fuel.
Co-generation	Co-generation is to use a heat engine or power generating
	plant to simultaneously generate electricity and produce
	useful heat. It is also called as CHP (Combined Heat and
	Power).
Co-generation using bagasse	In the co-generation project, bagasse is used as a fuel.

C. Summary of the methodology

Items			Summary	
GHG	emission	reduction	Co-generation system using bagasse which is introduced in a	
measur	es		sugar factory by the project generates electricity and produce	
			useful heat. The co-generation system supplies a part of the	
			generated electricity and all of the produced heat to the sugar	
			factory. Most of the electricity supplied to the power grid.	
			Therefore, the electricity supplied to the grid by the project	
			replaces grid electricity and it result in the GHG emission	
			reductions from the grid.	
			The heat produced by the project may reduce the GHG emission	
			reductions by replacing the heat produced by fossil fired boilers	
			in the factory. But the replacement of heat by the project is not	
			considered for conservativeness and simplification in this	
			methodology. In addition, most of the sugar factories in Vietnam	
			use bagasse-fired boiler to supply steam to their sugar	

	production process. That is the reason why the GHG emission	
	reductions from the replacement of fossil fuel fired boilers are	
	not considered in this methodology.	
Calculation of reference	Reference emissions are calculated based on the net electricity	
emissions	supplied to the grid of the electricity generated by the project	
	and CO ₂ emission factor of the Vietnamese national grid to	
	which the co-generation system by the project connects in a	
	year.	
Calculation of project	Project emissions are caused from the fossil fuel which is used	
emissions	to support the combustion of bagasse at the start-up of bagasse	
	fired boiler.	
Monitoring parameters	The quantity of the electricity supplied to the grid by the project	
	is monitored.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The bagasse used as fuel by the project shall be a waste from the sugar factory		
	which is the project site. It shall not include municipal wastes or the other		
	wastes. Fossil fuels can be used as an ignition accelerator and the amount of		
	them is lower than 5% of the bagasse on the basis of calorific value.		
Criterion 2	The project includes the installation of new co-generation system, capacity		
	expansion of existing co-generation system, and/or replacement of existing		
	co-generation system. If the project site has an existing co-generation system, the		
	project must expand the capacity of power generation more than the original		
	capacity.		
Criterion 3	The bagasse used as fuel by the project shall not be stored for more than a year in		
	order to avoid the fermentation of bagasse under anaerobic conditions and the		
	succeeding release of methane gases.		
Criterion 4	The project must not only supply electricity and heat to the sugar factory, but		
	also provide most of electricity generated by the project to the grid.		
Criterion 5	The pressure of steam from the boiler installed by the project to combust bagasse		
	shall be 10 MPa or more. The temperature of that shall be 520° C or more.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Grid electricity generation	CO ₂	
Project emissions		
Emission sources	GHG types	
Fossil fuel as ignition accelerator	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated on the basis of the net electricity generated by the project which is supplied to the grid and the CO_2 emission factor of the grid.

The quantity of electricity supplied to the grid by the project is directly monitored by an electrical power meter. It is also cross-checked by a receipt slip from the company which control the grid.

The CO_2 emission factor of the grid should be referred to the latest version of the CO_2 emission factor of the national grid in Vietnam "Study, definition of Vietnam grid emission factor", published by Department of Meteorology, Hydrology and Climate Change, MONRE and Ozone Layer Protection Centre. If the project does not use it, it should be instructed by the Vietnamese JCM committee.

Some sugar factories may replace fossil-fired boilers to supply steam with co-generation using bagasse. In that case, the project can also reduce GHG emission reductions through the decrease of fossil fuel use by the replacement of fossil fired boilers. But this methodology does not consider such emission reductions in terms of conservativeness and simplification. Most of the sugar factories in Vietnam use bagasse-fired boiler to supply steam to their sugar production process. That is also the reason why the GHG emission reductions from the replacement of fossil fired boilers are not considered in this methodology.

F.2. Calculation of reference emissions

Reference emissions is calculated based on the following formula:

$RE_y = EG_y * EF_{gnd}$	
Where,	
$RE_y = Reference$ emissions in year y	(tCO ₂ /year)
$EG_y =$ The quantity of net electricity generated by the project which is	(MWh/year)
Supplied to the grid in year y	
$EF_{grid} = CO_2$ emission factor for the national grid in Vietnam which is	(tCO ₂ /MWh)
connected by the project	

G. Calculation of project emissions

Project emissions are caused by the use of fossil fuels as firework fuels to start the bagasse fired boilers introduced by the project. The project emissions are calculated by the following formula;

$$PE_{y} = \sum_{i} FC_{i,y} * EF_{Fuel,i,y}$$

Where,

 $FC_{i,y}$ = The quantity of fuel type i combusted as ignition accelerator in year y (mass or volume unit/year)

 $EF_{Fuel,i,y} = CO_2$ emission coefficient of fuel type i in year y (tCO₂/mass or volume unit) i = Fuel types combusted as ignition accelerator in year y

The CO_2 emission coefficient, EF_{Fuel} , i, y, is defined by the following calculation;

$$EF_{Fuel,i,y} = NCV_{i,y} * EF_{CO2,i,y}$$

Where,

 $NCV_{i,y}$ = The weighted average net calorific value of the fuel type i in year y (GJ/mass or volume unit)

 $EF_{CO2,i,y}$ = The weighted average CO₂ emission factor of fuel type i in year y (tCO₂/GJ)

i = Fuel types combusted as ignition accelerator in year y

As for leakage, the increase of fossil fuel use outside of the sugar factory by the project is hard to occur because bagasse is not used as fuel outside of the sugar factory. Therefore, leakage is not considered in this methodology.

H. Calculation of emissions reductions

Emission reductions in year y are calculated by subtracting the project emissions from the reference emissions, based on the following formula:

$$ER_{y} = RE_{y} - PE_{y}$$

Where,

 $ER_y = Emission reductions in year y (tCO_2/year)$

The source of each data and parameter fixed <i>ex ante</i> is listed as below.			
Parameter	Description of data	Source	
EFgrid	CO ₂ emission factor for the national grid in	the latest version of the CO ₂	
	Vietnam which is connected by the project	emission factor of the national	
		grid in Vietnam "Study,	
		definition of Vietnam grid	
		emission factor", published by	
		Department of Meteorology,	
		Hydrology and Climate	
		Change, MONRE and Ozone	
		Layer Protection Centre	
NCV _{i,y}	The weighted average net calorific value of	IPCC default values at the	
	the fuel type i in year y	upper limit of the uncertainty at	
		a 95% confidence interval as	
		provided in Table 1.2 of	
		Chapter 1 of Vo.2 (Energy) of	

Data and parameters fixed ex ante I.

	the 2006 IPCC Guidelines on
	National GHG Inventories
The weighted average CO ₂ emission factor of	IPCC default values at the
fuel type i in year y	upper limit of the uncertainty at
	a 95% confidence interval as
	provided in Table 1.4 of
	Chapter 1 of Vo.2 (Energy) of
	the 2006 IPCC Guidelines on
	National GHG Inventories
	The weighted average CO_2 emission factor of fuel type i in year y