JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Socialist Republic of Viet Nam		
Name of the methodology proponents	Kubota Corporation, Nikken Sekkei Civil		
submitting this form	Engineering Ltd., The Japan Research Institute		
	Ltd.		
Sectoral scope(s) to which the Proposed	hich the Proposed 13. Waste Handling and Disposal		
Methodology applies			
Title of the proposed methodology, and	Title: Methane recovery from organic waste		
version number through controlled anaerobic dige			
	use for energy		
	Version number: V1.0		
List of documents to be attached to this form	☐The attached draft JCM-PDD:		
(please check):	☐Additional information		
Date of completion	2 March, 2015		

 $History \textbf{JOM} \ t\textbf{har proposed} \ \textbf{and its attached sheet are preliminary drawn and its attached sheet are preliminary drawn and the sheet are preliminary drawn and the$

Version of	neither been of	ficially approved under the JCM nor are guaraned under the JCM. Contents revised	
1.0	9 October 2014		
2.0	13 January 2013	Terms and definitions and Eligibility criteria revised.	

A. Title of the methodology

Methane recovery from organic waste through controlled anaerobic digestion and its use for energy

B. Terms and definitions

Terms	Definitions		
Anaerobic digester	Equipment that is used to generate heat from liquid or solid		
	waste through anaerobic digestion. The digester is covered or		
	encapsulated to enable biogas capture for its use of energy.		
Anaerobic digestion	Degradation and stabilization of organic materials by the action		
	of anaerobic bacteria that result in production of methane and		
	carbon dioxide. Typical organic materials that undergo		
	anaerobic digestion are municipal solid waste (MSW), animal		
	manure, waste water, organic industrial effluent and sludge		
	produced by effluent treatment facility under aerobic condition.		
Wet mesophilic fermentation	Treatment system which realizes fermentation with		
	concentration of solids (6 to 10%) and mesophilic condition (30		
	to 38 degree Celsius).		
Wet thermophilic	Treatment system which realizes fermentation with		
fermentation	concentration of solids (6 to 10%) and thermophilic condition		
	(50 to 55 degree Celsius).		
Biogas	Gas generated from an anaerobic digester. Typically, the		
	composition of the gas is CH ₄ (50 to 70%), CO ₂ (30 to 50%) and		
	H ₂ S and NH ₃ (below 1%).		
Municipal solid waste	A heterogeneous mix of different solid waste types, usually		
(MSW)	collected by municipalities or other local authorities. MSW		
	includes household waste, garden/park waste and commercial/institutional waste.		
Organic waste	Solid waste that contains degradable organic matter. This may		
	include, for example, domestic waste, commercial waste,		
	industrial waste (such as sludge from wastewater treatment		
	plants), hospital waste, MSW and septage.		
Garbage	Organic waste categorized as "Food Waste" and "Garden and		
	Park Waste" in "2006 IPCC Guidelines for National Greenhouse		
	Gas Inventories".		

Solid Waste	Discarded and insoluble material (including gases or liquids in	
	cans or containers).	
Solid waste disposal site	Designated areas intended as the final storage place for solid	
(SWDS)	waste.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology comprises measures to avoid the emissions of	
measures	methane to the atmosphere from garbage and septage that would	
	have otherwise been left to decay anaerobically and introduces	
	renewable energy technologies that supply users with electricity	
	and heat that displaces fossil fuel use.	
Calculation of reference	The reference scenario is the situation where, in the absence of	
emissions	the project activity, garbage is left to decay in a SWDS and	
	septage from households is not properly treated. In the result of	
	that, methane is emitted to the atmosphere. The reference	
	emission is calculated by adding the followings.	
	1. Emissions on the basis of the amount of methane emitted	
	from the decay of degradable organic carbon in the garbage	
	and septage.	
	2. Emissions on the basis of the fuel consumption of the	
	technologies that would have been used in the absence of	
	the project activity, times and emission factor for the fossil	
	fuel displaced.	
Calculation of project	Project emissions are calculated on the basis of monitored	
emissions	electricity.	
Monitoring parameters	Amount of garbage input to anaerobic digester	
	2. Amount of septage input to anaerobic digester	
	3. Amount of heat generated by the project activity	
	4. Amount of electricity generated by the project activity	
	5. Amount of electricity consumption of project activities	
	6. Percentage of water content in septage	
	7. Amount of solid waste to be brought in the project boundary	
	(in case if amount of garbage input to anaerobic digester is	
	not be measured)	
	8. Amount and concentration of biogas (in case if heat	
	generated by project activity is not measured)	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criteria 1	Anaerobic digesters and system that is fuelled by the biogas are to be installed.	
Criteria 2	The materials to be fed into the anaerobic digesters are garbage that would be	
	disposed at a landfill site and septage that would not be properly treated in the	
	absence of the project activity.	
Criteria 3	The project secures the materials of the project activity and has a proper	
	maintenance system that outlines a maintenance plan and equipment for	
	monitoring activities.	
Criteria 4	Anaerobic digester for wet mesophilic fermentation (30 to 38 degree Celsius) or	
	wet thermophilic fermentation (50 to 55 degree Celsius) is to be installed.	
Criteria 5	Biogas recovery rate is not less than 40 Nm³ per a tonne of garbage.	
Criteria 6	Track record of installing anaerobic digester, which is used in the project activity	
	is satisfied with the both criteria below.	
	1. More than two (2) projects to treat garbage or mix of garbage and septage	
	(amount of those are more than 10 tonne per day)	
	2. More than two (2) projects of which fermentation method is equivalent to the	
	one of the project.	

E. Emissions Sources and GHG types

Reference emissions		
Emissions sources	GHG types	
Methane emissions from a landfill site	CH4	
Fossil fuel consumption	CO ₂	
Grid electricity consumption	CO ₂	
Project emissions		
Emission sources	GHG types	
Grid electricity consumption	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated from the amount of waste that is fed into anaerobic digesters, and the amount of heat and electricity to be generated by project activity.

In the methodology, the rates of emission reductions through methane recovery from organic waste and its use for energy are fixed at a lower than those commonly observed. Therefore, the methodology results in a net reduction of emissions, since reference emissions are lower than the BaU emissions.

F.2. Calculation of reference emissions

$RE_{y} = RE_{CH4,SWDS,y} + (EG_{thermal,y}/\eta_{thermal})*EF_{FF,CO2} + RE_{EC,y}*EF_{e,y}$			
Re _v	Reference CO ₂ emissions during the period of year y (tCO ₂ /y)		
RE _{CH4,SWDS,y}	Reference emission occurring in year y generated from waste disposal at a		
	SWDS during a time period ending in year y (tCO2/y)		
EG _{thermal,y}	The net quantity of steam/heat supplied by the project activity during the year		
	y (TJ)		
$\eta_{thermal}$	The efficiency of the plant using fossil fuel that would have been used in the		
	absence of the project activity		
EF _{FF,CO2}	CO ₂ emissions factor of the fossil fuel that would have been used in the		
	reference plant (tCO2/TJ)		
RE _{EC,y}	The quantity of net electricity generation that is produced by the project		
EF _{e,y}	activity in year y (MWh/y)		
EF _{e,y}	CO ₂ emissions factor of electricity in year y (tCO ₂ /MWh)		
у	Years of the crediting period for which methane emissions are calculated (y is		
	a consecutive period of 12 months)		
$RE_{CH4,SWDS,y} = \varphi$	$o_{y} \times (1 - f_{y}) \times GWP_{CH4} \times (1 - OX) \times 16/12 \times F \times DOC_{f,y} \times MCF_{y}$		
	$\times \sum_{x=1}^{y} \sum_{j} W_{j,x} \times DOC_{j} \times e^{-kj(y-x)} \times (1-e^{-kj})$		
ϕ_{y}	Model correction factor account for model uncertainties for year y		
f_{y}	Fraction of methane captured at the SWDS and flared, combusted or used in		
	another manner that prevents the emissions of methane to the atmosphere in		
	year y		
GWP _{CH4}	Global Warming Potential of methane		
OX	Oxidation factor (reflecting the amount of methane from SWDS that is		
	oxidized in the soil or other material covering the waste)		

16/12	Ratio of molar mass of carbon against methane	
F	Fraction of methane in the SWDS gas (volume fraction)	
$\mathrm{DOC}_{\mathrm{f,y}}$	Fraction of degradable organic carbon (DOC) that decomposes under specific	
	conditions occurring in the SWDS for year y(weight fraction)	
MCF _y	Methane correction factor for year y	
$W_{j,x}$	Amount of organic waste type j disposed or prevented from disposal in the	
	SWDS in the year x (t)	
DOC_j	Fraction of degradable organic carbon (by weight) in the organic waste type	
	j(weight fraction)	
Kj	Decay rate for the organic waste type $j(1/year)$	
j	Type of residual organic waste or types of organic waste in the MSW	
X	Years in the time period in which organic waste is landfilled, extending	
	from the first year in the time period $(x=1)$ to year $y(x=y)$	

G. Calculation of project emissions

$PE_y = PEC_y * EF_{e,y}$		
PE_y	Project emissions in the year $y(tCO_2)$	
PEC _y	Project electricity consumption by applicable equipment (MWh/y)	
$\mathrm{EF}_{\mathrm{e,y}}$	CO 2 emissions factor of electricity in year y (tCO2/MWh)	

H. Calculation of emissions reductions

$ER_y = RE_y - PE_y$		
ER _y	GHG emission reductions in year y (tCO2)	
RE _y	Reference emissions in year y (tCO2)	
PE _y	Project emissions in year y (tCO2)	

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$EF_{e,y}$	CO2 emissions factor of electricity (tCO2/ MWh)	Ministry of Natural Resources
		and Environment, Viet Nam
EF_{FFco2}	CO2emission factor of the fossil fuel that	IPCC2006 guidelines
	would have been used in the reference plant	
	(tCO2/TJ)	
$\eta_{thermal}$	The efficiency of the plant using fossil fuel	Default value
	that would have been used in the absence of	
	the project activity	
ϕ_{y}	Model correction factor account for model	Methodological Tool "Emissions
	uncertainties	from solid waste disposal
		sites"(version06.0.1)
$\mathrm{GWP}_{\mathrm{CH4}}$	Global Warming Potential of methane	IPCC2006 guidelines
f	Fraction of methane captured at the SWDS	Measures Value no less than
	and flared, combusted or used in another	regulatory value set by the
	manner that prevents the emissions of methane	government of Viet Nam
	to the atmosphere	
OX	Oxidation factor (reflecting the amount of	IPCC2006 guidelines
	methane from SWDS that is oxidized in the	
	soil or other material covering the waste)	
F	Fraction of methane in the SWDS gas	IPCC2006 guidelines
	(volume fraction)	
$\mathrm{DOC}_{\mathrm{f}}$	Fraction of degradable organic carbon	IPCC2006 guidelines
	(DOC) that decomposes under specific	
	conditions occurring in the SWDS (weight	
	fraction)	
MCF	Methane correction factor	IPCC2006 guidelines
DOC _j	Fraction of degradable organic carbon (by	Default value
	weight) in the organic waste type j(weight	
	fraction)	
K _j	Decay rate for the organic waste type	Default value
	j(1/year)	
j	Composition of organic waste type j(weight	Default value
	fraction)	