JCM_VN_F_PM_ver01.0 JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM. JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Vietnam	
Name of the methodology proponents	Energy Saving for Irrigation Facility by	
submitting this form	Introducing High-efficiency Pumps	
Sectoral scope(s) to which the Proposed	Energy Saving	
Methodology applies		
Title of the proposed methodology, and	Energy Saving for Irrigation Facility by	
version number	Introducing High-efficiency Pumps , Ver1.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion		

History of the proposed methodology

Version	Date	Contents revised	

A. Title of the methodology

Energy saving by introducing high efficiency pumps in irrigation and drainage facility

B. Terms and definitions

Terms	Definitions	
Pumps for irrigation system	With the implementation of JCM project, pump is renewed or	
	newly introduced in the target facility, commercial facility etc	
	for irrigation and drainage	
Project pump	Pump which is renewed or newly introduced in the target	
	facility in case that JCM project is conducted	
	The size of pump is in the range from 3,000 to 4,000 (m3/h)	
	as the middle size	
Reference pump	Pump which is renewed or newly introduced in the target	
	facility in case that JCM project is not conducted and also	
	occupies major market share	
Pump efficiency	Pump efficiency (%) is calculated by dividing water power	
	(kW) by shaft input power (kW)	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims for saving	
measures	energy by introducing high efficiency pumps in the target facility	
	in Vietnam	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	pumps, calculated with power consumption of project pumps,	
	ratio of pump efficiency of reference/project pumps and CO2	
	emission factor for electricity consumed	
Calculation of project	Project emissions are GHG emissions from using project pumps,	
emissions	calculated with power consumption of project pumps and CO2	
	emission factor for electricity consumed	
Monitoring parameters	Power consumption of project pump	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project pump is installed to irrigation and drainage facility which uses middle	
	size pump.	
Criterion 2	Project pump is a pump with a efficiency of more than 80% within a specified	
	range of flow.	
Criterion 3	Pump product maker has testing facility for product efficiency in its factory and	
	pump system engineering facility for after-care-service.	
Criterion 4	Project pump uses environmental friendly paints such as paints with 0.1 % or	
	less lead, cadmium and tar during the production process.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by reference pump	CO2	
Project emissions		
Emission sources	GHG types	
Power consumption by project pump	CO2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project pump, ratio of pump efficiency for reference/project pumps, and CO2 emission factor for electricity consumed. The pump efficiency of reference pump is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference pump efficiency is set at a maximum value in corresponding capacity range.
- 2. The maximum values of pump efficiency are defined as " $\eta_{RE,i}$ " as described in Section I.

F.2. Calculation of reference emissions

$RE_{i,p} = \sum_{i} \{EC_{PJ,i,p} \times (\eta_{PJ,i} \div \eta_{RE,i}) \times EF_{elec} \}$		
RE _{i,p}	: Reference emissions during the period p [tCO2/p]	
EC _{PJ,i,p}	: Power consumption of project pump i during the period p [MWh/p]	
$\eta_{PJ,i}$: Pump efficiency of project pump i [-]	
$\eta_{RE,i}$: Pump efficiency of reference pump i [-]	
EF _{elec}	: CO2 emission factor for consumed electricity [tCO2/MWh]	

G. Calculation of project emissions

$$PE_{i,p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 $PE_{i,p}$: Project emissions during the period p [tCO2/p]

 $EC_{PJ,i,p}$: Power consumption of project pump i during the period p [MWh/p]

EF_{elec} : CO2 emission factor for consumed electricity [tCO2/MWh]

H. Calculation of emissions reductions

$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{i,p} - \mathbf{PE}_{i,p}$		
ER _p	: Emission reductions during the period p [tCO2/p]	
RE _{i,p}	: Reference emissions during the period p [tCO2/p]	
PE _{i,p}	: Project emissions during the period p [tCO2/p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO2 emission factor for consumed electricity.	The most recent value available
	When project pump consumes only grid	at the time of validation is
	electricity, the project participant applies the	applied and fixed for the

Parameter	Description of data	Source
	CO2 emission factor.	monitoring period thereafter. The
	For grid electricity: The most recent value	data is sourced from the official
	available from the source stated in this table at	data by Ministry of Natural
	the time of validation	Resource and Environment of
		Vietnam (MONRE)
$\eta_{RE,i}$	the pump efficiency of the reference pump i is	Specifications of reference pump
	the default efficiency value	i prepared for the quotation or
		factory acceptance test data by
	$\eta_{RE,i} = 0.746$	manufacturer.
		The default efficiency value is
		derived from the result of quality
		test on efficiency of pumps from
		manufacturers that has high
		market share. The survey should
		prove the use of clear
		methodology. The " $\eta_{RE,i}$ " should
		be revised if necessary from
		survey result which is conducted
		by JC or project participants
		every three years.
$\eta_{Pj,i}$	The efficiency of project pump i	Specifications of project pump i
		prepared for the quotation or
		factory acceptance test data by
		manufacturers.