JCM_ET_F_PM_ver01.0 JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM. JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Federal Democratic Republic of Ethiopia		
Name of the methodology proponents	Mizuho Information & Research Institute, Inc.		
submitting this form			
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable sources)		
Methodology applies			
Title of the proposed methodology, and	Title: Installation of geothermal power		
version number	plants/units in Ethiopia		
	Version number: 01.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	07/10/ 2014		

History of the proposed methodology

Version	Date	Contents revised	
01.0	07/10/2014	First edition	

A. Title of the methodology

Installation of geothermal power plants/units in Ethiopia Version 01.0

B. Terms and definitions

Terms	Definitions	
Power plant/unit	a power plant/unit is a facility that generates electric power.	
	Several power units at one site comprise one power plant,	
	whereas a power unit is characterized by the fact that it can	
	operate independently from other power units at the same	
	site. Where several identical power units (i.e. with the same	
	capacity, age and efficiency) are installed at one site, they	
	may be considered as one single power unit	
Grid power plant/unit a power plant/unit that supplies electricity to an electric		
	grid and, if applicable, to specific consumers. This means that	
	power plants supplying electricity to the grid and specific	
	captive consumers at the project are considered as a grid	
	power plant/unit, while power plants that serve only captive	
	consumers and do not supply electricity to the grid are not	
	considered as a grid power plant/unit	
Off-grid power plant/unit	a power plant/unit that supplies electricity to specific	
	consumers through a dedicated distribution network which is	
	not used by any other power plants.	
Net electricity generation	refers to the difference between the total quantity of	
	electricity generated by the power plant/unit and the auxiliary	
	electricity consumption (also known as parasitic load) of the	
	power plant/unit (e.g. for pumps, fans, controlling etc.)	
Installed power generation	the installed power generation capacity of a power unit is the	
capacity (or installed capacity	capacity, expressed in Watts or one of its multiples, for which	
or nameplate capacity)	the power unit has been designed to operate at nominal	
	conditions. The installed power generation capacities of its	
	power units;	

Greenfield power plant	a new renewable energy power plant that is constructed and
	operated at a site where no renewable energy power plant
	was operated prior to the implementation of the project
	activity;
A grid/project electricity system	is defined by the spatial extent of the power plants that are
	physically connected through transmission and distribution
	lines to the project activity (e.g. the renewable power plant
	location or the consumers where electricity is being saved)
	and that can be dispatched without significant transmission
	constraints;
Connected electricity system	is an electricity system that is connected by transmission
	lines to the project electricity system. Power plants within the
	connected electricity system can be dispatched without
	significant transmission constraints but transmission to the
	project electricity system has significant transmission
	constraint, and/or the transmission capacity of the
	transmission line(s) that is connecting electricity systems is
	less than 10 per cent of the installed capacity either of the
	project electricity system or of the connected electricity
	system, whichever is smaller;
NCG	Non Condensable Gases (NCGs) are natural components of
	geothermal fluids, and they are composed mainly of CO,
	CO2, H2 and CH4. In geothermal projects, NCG flow with
	the steam into the power plant. A small proportion of the CO2
	is converted to carbonate/bicarbonate in the cooling water
	circuit.

C. Summary of the methodology

Items		Summary
GHG emission r	reduction	Geothermal power plants supply electricity from project activity
measures		to the grid, and avoid greenhouse gas emissions from fossil fuel power plants.
Calculation of r	reference	Reference emissions are calculated on the basis of generation of
emissions	-	electricity in grid power plants and in baseline technologies to
		meet the minimum service level, which are replaced due to the

	project activity.	
Calculation of project	Project emissions are calculated on the basis of monitored fossil	
emissions	fuel consumption and emissions from the operation of the	
	geothermal power plants due to the release of NCGs.	
Monitoring parameters	Generated electricity to the grid, fossil fuel consumption and	
	CO2 and CH4 in the produced steam are monitored.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project activity is installation of a geothermal power plant at Ethiopia.	
Criterion 2	Net electricity generated by the project activity is delivered to Ethiopian national	
	power grid system.	
Criterion 3	The project activity employs a geothermal power generation unit supplied by a	
	company which has a past experience to supply a geothermal power generation	
	unit which steadily operated for at least 15 years.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
CO2 emissions from combustion of fossil fuels for electricity generation	CO2	
at grid power plants that are replaced due to the project activity		
CO2 emissions from combustion of fossil fuels for electricity generation	CO2	
from the baseline technology to meet suppressed demand for electricity		
that would be replaced due to the project activity		
Project emissions		
Emission sources	GHG types	
Fugitive emissions of CH4 and CO2 from NCG contained in geothermal	CO2	
steam	CH4	

CO2 emissions from combustion of fossil fuels for electricity generation	CO2
in geothermal power plants	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated on the basis of project emissions derived from monitored net electricity generation, under the assumption that the renewable electricity generated from geothermal source as a project activity will replace an equivalent amount of electricity composed of: the existing electricity which is currently generated by the grid power plants; and the electricity which would be additionally needed to meet a minimum service level (basic human needs) for electricity consumption.

According to IEA, electricity consumption per capita in Ethiopia in 2012 was 60 kWh/y which is lower than the energy poverty threshold defined in Sanchez, T. (2010), 120 kWh/y which can be regarded as a minimum service level. Therefore, Ethiopia has suppressed demand for electricity. A baseline technology to generate additional electricity is identified as kerosene which is widely used for off-grid power generation in Ethiopia.

F.2. Calculation of reference emissions

REy = RGPJ, y * RF, CM, y

REy: Reference emissions in year y [tCO2/y] RGPJ,y: Quantity of net electricity generation that is produced and fed into the grid as a result of the implementation of the JCM project activity in year y [MWh/y] RF,CM,y: Combined margin CO2 emission factor for grid connected power generation in year y calculated the latest emission factor [tCO2/MWh]

RF,CM,y = RF,OM,y * 0.5 + RF,BM,y * 0.5

RF,OM,y: Operating margin CO2 emission factor for grid power plants and off-grid power plants in year y calculated the latest emission factor [tCO2/MWh] RF,BM,y: Build margin CO2 emission factor for grid power plants and off-grid power plants in year y calculated the latest emission factor [tCO2/MWh]

Grid power plants and a baseline technology to generate additional electricity needed to meet a minimum service level are included in the calculation of the operating margin and build margin emission factor. The default CO2 emission factor can be applied in accordance with a type of fossil fuel used for power generation. A baseline technology shall be identified as the one which is commonly used for off-grid power generation in Ethiopia. The technology is kerosene for the moment.

Reference emission factor is calculated as follows:

$$RF_{y} = \frac{EF_{BT,y} * (MSL - EC_{y}) + EF_{grid,y} * EC_{y}}{MSL}, \text{ if } MSL - EC_{y} > 0$$
$$RF_{y} = EF_{grid,y}, \text{ if } MSL - EC_{y} \le 0$$

Where

EFBT,y: CO2 emission factor from power generation by the baseline technology in year y [tCO2/MWh]

EFgrid,y: CO2 emissions factor from the grid power plants in year y [tCO2/MWh]

ECy: Electricity consumption per capita [kWh/y]

MSL: Minimum service level of electricity consumption per capita [kWh/y]

G. Calculation of project emissions

Project emissions are calculated on the basis of monitored electricity, fuel consumption and release of NCGs.

PEy = PEFF, y + PEGP, y

PEy: Project emissions in year y [tCO2/y]

PEFF,y: Project emissions from fossil fuel consumption in year y [tCO2/y]

PEGP,y: Project emissions from the operation of geothermal power plants due to the release of NCGs in year y [tCO2/y]

PEFF,y = PFCi,y * NCVi,y

PFCi,y: Project consumption of fossil fuel iof the applicable equipment in year y [kl, t, 1000Nm3/y]

NCVi.y: Net calorific value of fossil fuel i(diesel, kerosene, natural gas, etc.) in year y [tCO2/y]

PEGP,y = (wsteam,CO2,y + wsteam,CH4,y x GWPCH4) * Msteam,y

wsteam,CO2,y: Average mass fraction of CO2in the produced steam in year y [tCO2/t steam]

wsteam,CH4,y: Average mass fraction of CH4in the produced steam in year y [tCH4/t steam]

GWPCH4: Global warming potential of CH4valid for the relevant commitment period [tCO2/tCH4]

Msteam,y: Quantity of steam produced in year y [t steam/y]

H. Calculation of emissions reductions

Emissions reduction is calculated as the difference between the reference emissions and project emissions, as follows:

ERy = REy - PEy Where ERy: Emissions reduction in year y [tCO2/y] REy: Reference emissions in year y [tCO2/y] PEy: Project emissions in year y [tCO2/y]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
GWPCH4	Global warming potential of methane valid for	IPCC, Climate Change 2007:
	the project period: 21 [tCO2/CH4]	Working Group I: The Physical
		Science Basis
NCVi,y	Net calorific value of fossil fuel i (diesel,	IPCC guideline 2006
	kerosene, natural gas, etc.) in year y [tCO2/y]	
	Default efficiency factors for power plants	Tool to calculate the emission
	(oil) [30%]	factor for an electricity system
		version 4.0
MSL	Minimum service level of electricity	Sanchez, T. (2010)
	consumption per capita	
RFgrid,BM,	Build margin CO2 emission in year y: 0	EEP master plan, EEP.
у	[tCO2/MWh]	
RFgrid,OM,	Operating margin CO2 emission in year y: 0	List of power generation plants
у	[tCO2/MWh]	in Ethiopia, EEP. Conservative
		default value.