JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM.

Bilateral Offset Credit Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Bangladesh
Name of the methodology proponents	PEAR Carbon Offset Initiative, Ltd.
submitting this form	
Sectoral scope(s) to which the Proposed	Waste energy recovery
Methodology applies	
Title of the proposed methodology, and	Title: Waste Heat Recovery and Utilization in
version number	Textile and Garment Factory
	Version number: 01.0
List of documents to be attached to this form	☐ The attached draft BOCM-PDD:
(please check):	Additional information
Date of completion	5 January 2015

History of the proposed methodology

Version	Date	Contents revised
01.0	5 January 2015	

A. Title of the methodology

Waste Heat Recovery and Utilization in Textile and Garment Factory

B. Terms and definitions

Terms	Definitions
Textile dyeing and finishing	The procedures from fabric pre-treatment to finishing in
	textile and garment dyeing houses.
	Including main procedures of fabric pre-treatment, dyeing
	and finishing (washing, drying) that is the chemical and
	physical treatments of consuming heat and steam.

Waste heat	Heat energy of boiler exhaust and/or waste water from
	dyeing machines

C. Summary of the methodology

Items	Summary
GHG emission reduction	Recovered waste heats are used for preheating feed-water to
measures	boilers and dyeing machines so that reduce fuel consumption of
	boilers that provide steam for dyeing and finishing process.
Calculation of reference	Reference emission is calculated based on the amount of waste
emissions	energy/heat utilized, boiler efficiency and CO2 emission factor
	of the fossil fuel that is used for providing energy to the dyeing
	process. Conservative values of the parameters are used to
	ensure the reference emission is lower than BaU emission.
Calculation of project	The project emission is calculated based on the electricity
emissions	consumption of waste heat recovery system and CO2 emission
	factor of electricity.
Monitoring parameters	The following parameters need to be monitored.
	The temperature and amount of feed-water for boiler and/or
	dyeing machines in the project. The temperature of feed-water
	for boiler and dyeing machines in the case of without project.
	The amount of electricity consumed by the waste heat recovery
	system.

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Waste heat (heat from dyeing waste water) recovery from dyeing and finishing
	process in the existing or new textile and garment factories.
Criterion 2	Spiral heat exchanger without distance pieces is applied for heat recovery.
Criterion 3	Targeting factories with dyeing capacity more than 10 ton/day

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fossil fuel consumption for providing the same amount of energy (steam	CO_2	
and heat) utilized from waste heat recovery		
Project emissions		
Emission sources GHG types		
Electricity consumption by the waste heat recovery system	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The reference emission is the emission from consumption of fossil fuel to gain the same amount of energy utilized from waste heat recovery system.

F.2. Calculation of reference emissions

 $RE_y = (T_P - T_{Re}) \times W_{th} \times F_w \times \frac{1}{Ef} \times EF_{CO2,fuel} \times 10^{-6}$

RE_v: Reference emission [tCO₂/y]

 T_P : Temperature of feed-water in the project [°C]

T_{Re}: Temperature of feed-water in the case of without the project [°C]

W_{th}: The specific heat of water [kJ/kg. °C]

 F_w : The amount of the feed-water in the project [t/y]

Ef: Boiler efficiency [ratio]

EF_{CO2,fuel}: CO₂ emission factor the fossil fuel that is used to provide energy for dyeing and

finishing process [tCO₂/TJ]

G. Calculation of project emissions

Project emission is calculated based on the amount of electricity consumed by the waste heat

recovery system and electricity CO₂ emission factor.

 $PE_y = EC_{PJ,y} \times EF_{elec}$

PE_v: Project emissions [tCO₂/y]

EC_{Pl,y}: Electricity consumption by the waste heat recovery system [MWh/y]

 $EF_{elec}: \quad CO_2 \, emission \, factor \, of \, electricity \, [tCO_2/MWh]$

H. Calculation of emissions reductions

 $ER_y = RE_y - PE_y$

ER_v: Emission Reductions [tCO₂/y]

 RE_{ν} : Reference emissions [tCO₂/y]

PE_v: Project emissions [tCO₂/y]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
Ef	Boiler efficiency	Maximum boiler efficiency 1.0 is
		used for conservativeness
EF _{CO2,fuel}	CO ₂ emission factor of the fuel used for	2006 IPCC Guidelines for National
	steam generation	Greenhouse Gas Inventories. Table
	Natural gas: 54.3 t CO ₂ /TJ (54.3–58.3)	1.4, Chapter 1, Volume 2.
EF _{elec}	CO ₂ emission factor of electricity: 0.8	Emission factor of diesel captive
	tCO ₂ /MWh (Diesel captive power	power is used for the
	generation)	conservativeness (Table I.F.1, Small
		Scale CDM Methodology: AMS
		I.F., Ver.2)
		Emission factor of the grid is 0.67
		tCO ₂ /MWh (Official data of
		Bangladesh Government).