JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Supplies electricity and chilled water produced by Combined Heat and Power

A.2. General description of project and applied technologies and/or measures

Combined Heat and Power (CHP) System which consists of an 1,000 kW class gas engine and an absorption chiller will be installed in Hotel A, located in Surabaya, East Java Province. A part of electricity supplied by grid and electricity consumption by chillers are displaced with electricity and chilled water produced by CHP. High overall efficiency of CHP enables the reduction of both CO2 emission and utility cost.

A.3. Location of project, including coordinates

Country	Republic of Indonesia	
Region/State/Province etc.:	East Java province	
City/Town/Community etc:	Surabaya	
Latitude, longitude	7°S, 112°E	

A.4. Name of project participants

The Republic of Indonesia	Hotel A
Japan	Fuji Electric Co., Ltd.

A.5. Duration

Starting date of project operation	01/05/2016
Expected operational lifetime of project	5 years

A.6. Contribution from developed countries

The proposed project was financially supported by the Ministry of the Environment, Japan through the financing programme for JCM model projects which seeks to acquire JCM credits. As for technology transfer, Fuji Electric Co., Ltd. is going to provide the following supports to A Hotel:

Direct instruction on proper operation, and capacity building

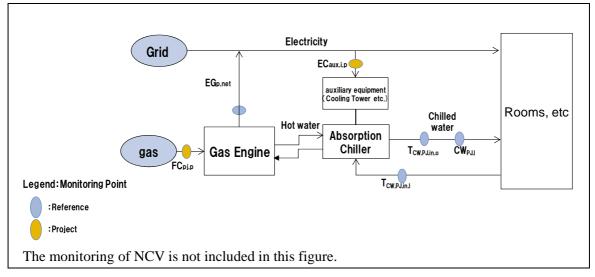
• Training and capacity building on operation and monitoring of CHP system

B. Application of an approved methodology(ies)			
B.1. Selection of methodology(ies)			
Selected approved methodology No. ID_AMxxx			
Version number	1.0		
Selected approved methodology No.	ID_AM002		
Version number	1.0		

|--|

Eligibility	Descriptions specified in the	Project information
criteria	methodology	
Criterion 1	CHP consists of gas engine	CHP consists of gas engine generator
	generator fueled by natural gas and	fueled by natural gas and absorption chiller which uses waste heat from
	absorption chiller which uses waste	generator. CHP generates both electricity
	heat from generator. CHP generates	and heat which displaces grid electricity import from the grid.
	both electricity and heat which	1 0
	displaces grid electricity imported	
	from the grid.	
Criterion 2	A cooling capacity of project	A cooling capacity of project absorption chiller per unit is 275USRt.
	absorption chiller per unit is less	chiner per unit is 27505Kt.
	than 1,200 USRt. (1 USRt = 3.52	
	kW), and total cooling capacity of	
	absorption chiller does not exceed	
	that of existing centrifugal chiller.	
Criterion 3	Chilled water produced by	Chilled water produced by absorption chiller displaces water produced by
	absorption chiller displaces water	existing centrifugal chillers.
	produced by existing centrifugal	
	chillers.	
Criterion 4	Electricity generated by gas engine	Electricity generated by gas engine
	generator is not sold to the grid and	generator is not sold to the grid and used
	used only for self-consumption.	only for self-consumption.
Criterion 5	COP of project absorption chiller	COP of project absorption chiller is 0.71,
	calculated under the standard	which is calculated under the standard
	temperature conditions is not less	temperature conditions.
	than 0.7. COP _{absorp,tc, i} is derived	

	from the recalculation of COP of	
	project absorption chiller i	
	(COP _{absorp,spec} , i) by adjusting	
	temperature conditions from the	
	project specific condition to the	
	standardizing conditions.	
	COP _{absorp,spec, i} is given from the	
	specifications prepared for the	
	quotation or factory acceptance test	
	data at the time of shipment by	
	manufacturer.	
	[Equation to calculate COP _{absorp,tc, i}]	
	$COP_{absorp,tc, i} = COP_{absorp,spec, i} *$	
	[$(T_{cooling out,i} - T_{chilled out,i} + TD_{chilled} +$	
	$TD_{cooling}) / (37 - 7 + TD_{chilled} +$	
	$TD_{cooling})]$	
Criterion 6	Electricity generation efficiency of	Electricity generation efficiency of gas
	gas engine generator is not less than	engine is 43.6%.
	40% (LHV basis) in specifications	
	prepared for the quotation or test	
	data at the time of shipment by	
	manufacturer.	
Criterion 7	In the case of replacing the existing	The existing centrifugal chiller is not
	chiller with the project chiller, the	replaced and used altogether with project
	plan for not releasing refrigerant	chiller.
	used for the existing centrifugal	
	chiller is prepared.	


C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions			
Emission sources	GHG type		
Grid electricity consumption displaced by gas engine generator	CO ₂		
Grid electricity consumption by centrifugal chiller calculated from the	CO ₂		
amount of chilled water produced by absorption chiller			

Project emissions	
Emission sources	GHG type
Natural gas consumption by gas engine generator	CO ₂
Electricity consumption by auxiliary equipment of absorption chiller	CO ₂

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

Year	Estimated	Reference	Estimated	Project	Estimated	Emission
	emissions (tC	O _{2e})	Emissions (tCO _{2e})		Reductions (tCC	D _{2e})
2016		5,531		3,664		1,867
2017		8,296		5,496		2,800
2018		8,296		5,496		2,800
2019		8,296		5,496		2,800
2020		8,296		5,496		2,800
Total						
(tCO _{2e})		38,715		25,648		13,067

C.3. Estimated	emissions	reductions	in	each vear
C.J. Estimated	CHIISSIONS	reductions	ш	cach year

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for	No	
the proposed project		

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

it is concerned about the recent electricity price increase. (25% increase since 2013) We are seriously concerned about how to reduce the increasing energy cost to maintain the Hotel.

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments received
Director of	We are seriously concerned about	The Hotel shows a sound
engineering	how to reduce the increasing energy	management system and record, with
	cost to maintain the Hotel.	a good standing in credit limit
	Applying highly energy efficient	screening. However, it is concerned
	Combined Heat & Power System	about the recent electricity price
	under JCM Program is a good	increase. (25% increase since 2013)
	solution, for reducing energy cost,	
	providing power security, as well as	
	reducing CO2 emission, which is a	
	good promotion for the Hotel in	
	contributing to the Environment.	

F. References

Reference lists to support descriptions in the PDD, if any.

Annex

Revision history of PDD			
Version	Date	Contents revised	
1.0	#/#/2015	First edition	