JCM Project Design Document (PDD), JCM proposed methodology and their attached sheets are preliminary drafts and have neither been officially registered/approved under the JCM, nor are guaranteed to be officially registered/ approved under the JCM. JCM_ID_F_PM_ver01.0

JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Indonesia	
Name of the methodology proponents	NTT DATA INSTITUTE OF MANAGEMENT	
submitting this form	CONSULTING, INC	
Sectoral scope(s) to which the Proposed	1 Energy Industry	
Methodology applies	3 Energy demand	
Title of the proposed methodology, and	Power generation and chilled water supply from	
version number	Combined Heat and Power	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	xx/xx/2015	

History of the proposed methodology

Version	Date	Contents revised
1.0	xx/xx/2015	First Edition

A. Title of the methodology

Power generation and chilled water supply by Combined Heat and Power

B. Terms and definitions

Terms	Definitions	
Combined Heat and Power	CHP is a system which generates and utilizes heat and power	
(CHP)	simultaneously from same primary energy source.	
Absorption Chiller	Absorption Chiller is a system which uses heat (steam or hot	
	water) to produce chilled water for air conditioning. Water as	
	refrigerant and lithium bromide as the absorbent are used in the	
	Absorption Chiller.	
Centrifugal chiller	A <i>centrifugal chiller</i> is a type applying a centrifugal compressor.	
	It is commonly used for air-conditioning with huge cooling load,	
	e.g., buildings, shopping malls or factories etc.	
Cooling capacity	<i>Cooling capacity</i> is the ability of individual chiller to remove	
	heat. In this methodology, "Cooling capacity" represents the	
	performance of chiller per unit, not per a system consisting of	
	multiple chiller units.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	CHP which consists of gas engine generator and Absorption	
measures	Chiller generates both electricity and heat which displaces	
	electricity import from the grid	
Calculation of reference	Reference emissions are GHG emissions from the displacement	
emissions	of grid electricity and electricity consumed by reference	
	centrifugal chillers, which are calculated based on the amount of	
	electricity generated by project gas engine generator and the	
	amount of chilled water produced by project Absorption Chiller.	
Calculation of project	Project emissions are GHG emissions from the consumption of	

emissions	natural gas by gas engine generator and electricity consumed by	
	auxiliary equipment of project Absorption Chiller, which are	
	calculated based on the amount of natural gas consumed by gas	
	engine generator and amount of electricity consumed by	
	auxiliary equipment of project Absorption Chiller.	
Monitoring parameters	• Amount of net electricity generated by gas engine generator	
	• Amount of chilled water produced by Absorption Chiller	
	• Average inlet temperature of the chilled water entering the	
	Absorption Chiller	
	• Average outlet temperature of the chilled water leaving the	
	Absorption Chiller	
	• Amount of natural gas consumed by gas engine generator	
	• Net calorific value of natural gas consumed by gas engine	
	generator	
	• Amount of electricity consumed by auxiliary equipment of	
	Absorption Chiller	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	CHP consists of gas engine generator fueled by natural gas and Absorption		
	Chiller which uses waste heat from generator. CHP generates both electricity and		
	heat which displaces grid electricity imported from the grid.		
Criterion 2	A Cooling capacity of project Absorption Chiller per unit is less than 1,200		
	USRt. (1 USRt = 3.52 kW), and total <i>Cooling capacity</i> of <i>Absorption Chiller</i>		
	does not exceed that of existing centrifugal chiller.		
Criterion 3	Chilled water produced by Absorption Chiller displaces water produced by		
	existing centrifugal chillers.		
Criterion 4	Electricity generated by gas engine generator is not sold to the grid and used		
	only for self-consumption.		
Criterion 5	COP of project Absorption Chiller calculated under the standard temperature		
	conditions is not less than 0.7. $\text{COP}_{absorp,tc, i}$ is derived from the recalculation of		
	COP of project Absorption Chiller i (COPabsorp,spec, i) by adjusting temperature		
	conditions from the project specific condition to the standardizing conditions.		
	COP _{absorp,spec, i} is given from the specifications prepared for the quotation or		
	factory acceptance test data at the time of shipment by manufacturer.		

	[Equation to calculate COP _{absorp,tc, i}]			
	$COP_{absorp,tc, i} = COP_{absorp,spec, i} * [(T_{cooling out, i} - T_{chilled out, i} + TD_{chilled} + TD_{cooling}) /$			
	$(37 - 7 + TD_{chill})$	$_{ed} + TD_{cooling})]$		
	$COP_{absorp,tc, i}$	COP of project Absorption Chiller i calculated under the		
		standard temperature conditions* [-]		
	$COP_{absorp,spec, i}$	COP of project Absorption Chiller i under the project specific		
		conditions [-]		
	$T_{cooling out,i}$	Output cooling water temperature of project chiller <i>i</i> set under		
		the project specific condition [degree Celsius]		
	$T_{chilled out,i}$	Output chilled water temperature of project chiller <i>i</i> set under		
		the project specific condition [degree Celsius]		
	$TD_{chilled}$	Temperature difference between condensing temperature of		
		refrigerant and output cooling water temperature,		
		1.5 degree Celsius set as a default value [degree Celsius]		
	$TD_{cooling}$	Temperature difference between evaporating temperature of		
		refrigerant and output chilled water temperature,		
		1.5 degree Celsius set as a default value [degree Celsius]		
	*The standard temperature conditions to calculate COP _{PJ,tc,i} are as follows:			
	Chilled water: Output 7°C; Input 12 °C			
	Cooling water: Output 37 °C; Input 32 °C			
Criterion 6	Electricity generation efficiency of gas engine is not less than 40% (LHV basis)			
	in specifications prepared for the quotation or test data at the time of shipment by			
	manufacturer.			
Criterion 7	In the case of replacing the existing chiller with the project chiller, the plan for			
	not releasing refrigerant used for the <i>existing centrifugal chiller</i> is prepared.			

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Grid electricity consumption displaced by gas engine generator	CO ₂	
Grid electricity consumption by centrifugal chiller calculated from the	CO ₂	
amount of chilled water produced by Absorption Chiller		

Project emissions		
Emission sources	GHG types	
Natural gas consumption by gas engine generator	CO ₂	
Electricity consumption by auxiliary equipment of Absorption Chiller	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on the net amount of electricity generated by project gas engine and the amount of chilled water produced by project *Absorption Chiller*.

Reference emissions from chilled water production are calculated from the COP of reference centrifugal chiller and the amount of electricity consumption equivalent to the heat capacity of chilled water produced by project *Absorption Chiller* which would be the same amount of chilled water as produced prior to the start of project activity.

The net emission reduction is ensured in the following manner:

1. The COP of reference centrifugal chillers is conservatively set by referring to ID_AM002 "Energy Saving by Introduction of High Efficiency Centrifugal Chiller" which set this value conservatively.

2. If different capacities of chillers are installed in the project site, the COP value of the largest capacity chiller should be applied to ensure conservativeness.

F.2. Calculation of reference emissions

$RE_p = RE_{elec} + R$	RE_{cool} (Eq. 1)	
Where,		
RE_p RE_{elec}	Total reference emissions during a given period p Reference emissions from consumption of grid	(tCO ₂ /p)
RE_{cool}	electricity during a given period p Reference emissions from the production of chilled	(tCO_2/p)
	water during a given period p	(tCO_2/p)
$RE_{elec} = EG_{p, net}$	$e_{t} * EF_{elec}$ (Eq.	2)

Where,		
$EG_{p, net}$	Amount of net electricity generated by gas engine	
	generator which displaces grid electricity during a	
	given period p	(MWh/p)
EF_{elec}	CO2 emission factor of regional grid electricity in	
	Indonesia	(tCO_2/MWh)
$RE_{cool} = EC_{RE}$	* EF_{elec} (Eq.	3)
Where,		
EC_{RE}	Amount of electricity consumption equivalent to the	
	COP of reference centrifugal chiller and the amount of	
	electricity consumption equivalent to the heat	(MWh/p)
	capacity of chilled water produced by project	
	Absorption Chiller	
$EC_{RE} = \{ CG_{PJ}, \}$	$/(3.6 * 10^{-3}) \} / COP_{RE}$ (I	Eq. 4)
Where,		
CG_{PJ}	Heat capacity of chilled water produced by	
	Absorption Chillers during a given period p	(TJ/p)
$3.6 * 10^{-3}$	Conversion factor from TJ to MWh	(TJ/MWh)
COP_{RE}	COP of reference centrifugal chiller under the	
	standard temperature conditions	(-)
$CG_{PJ} = \Sigma \{ CW \}$	$T_{PJ,l} * C * (T_{CW, PJ, in, l} - T_{CW, PJ, out, l}) \}$	(Eq. 5)
Where,		
$CW_{PJ,l}$	Amount of chilled water produced by Absorption	ļ
	<i>Chiller</i> during the monitoring interval <i>l</i>	(ton)
С	Specific heat capacity of the chilled water	
	$(=4.1868 \times 10^{-6})$	(TJ/ton)
T _{CW, PJ, in, l}	Average inlet temperature of the chilled water	
0 11, 1 3, 11, l	entering the Absorption Chiller during monitoring	
	interval <i>l</i>	(°C)
T _{CW, PJ, out,l}	Average outlet temperature of the chilled water	. ,
C, 1 9, 0ul,t		

	leaving the Absorption Chiller during monitoring	5	
	interval l	(°C)	
l	Monitoring intervals for monitoring the amount and	1	
	temperature of chilled water produced during a given		
	period p	(-)	

G. Calculation of project emissions

$PE_p = PE_{gen,p} +$	- <i>PE</i> _{<i>aux,p</i>} (Eq.	6)					
Where,							
PE_p	Total project emissions during a given period p	(tCO ₂ /p)					
PE gen,p	Project emissions from natural gas consumed by gas						
	engine generator during a given period p \square	(tCO_2/p)					
PE aux,p	Project emissions from electricity consumed by						
	auxiliary equipment of project Absorption Chiller (tCO2/p)						
	during a given period p						
Where, $FC_{PJ,p}$	Amount of natural gas consumed by gas engine	_					
	generator during a given period p \Box	(Nm^3/p)					
NCV_p	Net calorific value of natural gas consumed	(MJ/m^3)					
CEF	Default emission factor of natural gas	(tC/TJ)					
$PE_{aux,p} = \Sigma(EC_{aux, i, p} * EF_{elec}) \qquad (Eq. 8)$							
Where,							
Where, EC _{aux, i, p}	Amount of electricity consumed by auxiliary	1					
	Amount of electricity consumed by auxiliary equipment i of project <i>Absorption Chiller</i> during a						

Emission reductions are calculated as the difference between the reference emissions and project emissions, as follows:

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data						Source
EF_{elec}	CO ₂ emission factor for consumed electricity.				The most recent value available		
						at the time of validation is	
	0.814*[tCO ₂ /MWh] (Grid electricity)						applied and fixed for the
	*The most recent value available from the						monitoring period thereafter.
	source stated in this table at the time of						The data is sourced from
	validation						"Emission Factors of Electricity
							Interconnection Systems",
						National Committee on Clean	
						Development Mechanism	
						Indonesian DNA for CDM	
						unless otherwise instructed by	
							the Joint Committee.
COP_{RE}	The COP of the reference chiller.					[COP of existing centrifugal	
							chiller]
	Comparing the value of the centrifugal chiller and the value of following table, higher COP						Manufacturer's specification
	value is used.						
							[Value of Table COP _{<i>RE</i>,I}]
	Table $COP_{RE,\mathbf{I}}$					ID_AM002 "Energy Saving by	
	Cooling capacity		300≦	450≦	500≦	700≦	Introduction of High Efficiency
	/unit	x<300	x<450	450 <u>≡</u> x<500	x<700	x<1,250	Centrifugal Chiller"
	(USRT)						
	COP _{RE}	4.92	5.33	5.59	5.85	5.94	
		I	I	I	I		
CEF	Default carbon content of natural gas is					2006 IPCC Guidelines for	
	15.3tC/TJ						National Greenhouse Gas
							Inventories, Volume 2, Table1.4