JCM_ID_F_PM_ver01.0 JCM proposed methodology and its attached sheet are preliminary drafts and have neither been officially approved under the JCM, nor are guaranteed to be officially approved under the JCM. JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Indonesia
Name of the methodology proponents	Nomura Research Institute., Ltd
submitting this form	
Sectoral scope(s) to which the Proposed	Monufacturing Industries
Methodology applies	
Title of the proposed methodology, and version	REDUCTION OF ENERGY CONSUMPTION BY
number	INTRODUCING AN ENERGY-EFFICIENT OLD
	CORRUGATED CARTON PROCESSING SYSTEM INTO A
	PAPER FACTORY
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
Date of completion	

History of the proposed methodology

Version	Date	Contents revised
Ver. 1.0	08/01/2015	

A. Title of the methodology

REDUCTION OF ENERGY CONSUMPTION BY INTRODUCING AN ENERGY-EFFICIENT OLD CORRUGATED CARTON PROCESSING SYSTEM INTO A PAPER FACTORY

B. Terms and definitions

Terms	Definitions
Old Corrugated Carton Line	It refers to the process for adjusting materials to be delivered
(OCC Line)	to a PM line in the corrugated carton production process. The
	energy used is electricity.
Paper Machine	It refers to the process for making paper, usually called PM
(PM)	line, which is part of an old corrugated carton production
	process.
Paper Yield	It is calculated as the ratio of materials of paper net of
	impurities, from the recycled paper inputs.

C. Summary of the methodology

Items	Summary
GHG emission reduction	The OCC line has eight processes, consists of approximately 30
measures	element devices in total, and consumes nearly half of the total
	electricity consumption of the entire paper production process.
	Improvement of mechanical efficiency of each element device
	can save the motor electricity, and reduction of the electricity
	consumption can lead to a CO_2 reduction.
Calculation of reference	Energy intensity (specific energy consumption) is set based on
emissions	the performance of the existing production lines in the company
	under study. It is then multiplied by the project production and
	an emission factor of electricity consumed to calculate reference
	emission.
Calculation of project	Electricity consumption in a newly built line is measured.
emissions	

Monitoring parameters	Electricity consumption. Paper production.
nienner mg parameters	Lieeureny consumption, i uper production.

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

The project is introducing a high energy-efficient device in expansion of the OCC lines in an existing factory.

Criterion 1	A monitoring system for measuring electricity consumption per hour of each
	OCC line is provided.
Criterion 2	The designed energy intensity in the OCC line is 140kWh/product 1t or less.
Criterion 3	Instructions by an expert for adjustment, replacement, and improvements of
	machines are planned to be given regularly (at least once every three months).
Criterion 4	The paper yield of the OCC line is 87% or more.
Criterion 5	The water consumption in the OCC line is 10 tons/product 1t or less.
Criterion 6	The targeted company has more than 4 operating existing OCC lines which have
	more than one year operating records.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity Generation	CO_2	
Project emissions		
Emission sources	GHG types	
Electricity Generation	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

In this methodology, the reference emissions are calculated based on the best past performance of the existing OCC lines of the same factory.

As specified in the eligibility criterion 6, the factory has a historical annual record of more than 4 existing OCC lines.

It is assumed to be natural that the company will choose the system with the same operation techniques and proven performance. Even the same technological system is introduced, its performance varies dependent on many operating factors and conditions.*

Here, the methodology chooses the reference 'specific energy consumption (SEC^{REF}) ' as that of an existing line which showed the best annual performance in the latest 3 years. If the line's operating record is less than 3 years, choose the 1 or 2 year annual performance on the SEC. *Main equipment of reducing CO2 is Fractionator in the line below,

A total amount of raw materials are usually input into a rough selection screen, and then into a fractionator which separates between long fibers and short fibers. In the subsidized project, a fractionator is installed before the rough selection screen so that long fibers and short fibers are separated in advance. This reduces a throughput of the post process. Reduction of a throughput makes the capacity of equipment and motor power smaller, contributing to energy conservation.

Cleaning to eliminate foreign substances is usually conducted in 3 stages at high concentration, medium concentration and low concentration. In this subsidized project, the ability of the medium-concentration cleaner to eliminate foreign substances is improved. This obviates the need for a high-concentration cleaner, for which energy can be saved.

F.2. Calculation of reference emissions

Reference Specific Electricity Consumption:

$$SEC^{REF} = \min_{latest \; 3 \; years} \left[\min_{i} \left[\left(\sum_{m \; over \; a \; year} EC_{i,m} \right) \middle/ \left(\sum_{m \; over \; a \; year} PP_{i,m} \right) \right] \right]$$

where

" $EC_{i,m}$ " denotes electricity consumption by the existing line *i* in a month *m*;

" $PP_{i,m}$ " denotes paper production by the existing line *i* in a month *m*;

"minimum" over latest 3 years is for the annual values of the last 3 years; and

"minimum" over *i* is weighted by production $(\sum_{m \text{ over } a \text{ year }} PP_{i,m})$ of each line *i* for the latest 3 years each.

Reference Emissions:

$$RE_{\mathcal{Y}} = \sum_{j,m} SEC^{REF} \cdot PP_{j,m} \cdot CEF_m^{EL}$$

where

"j" denotes the new OCC lines introduced by the project.

" $CEF_m^{EL."}$ denotes the CO₂ emission factor of the electricity used in the month *m* in a year *y*. If the grid electricity is used, the latest value supplied by the Indonesian JCM Website is used. If other sources is used, the CEF is calculated by using the latest 1 year data provided by the source. The weighted average by the paper production is applied for the monthly CEF if plural sources are used in the month.

G. Calculation of project emissions

Project Emissions:

$$PE_{y} = CEF_{m}^{EL} \cdot \sum_{m \text{ over a year }} EC_{j,m}$$

H. Calculation of emissions reductions

Emission Reductions:

$$ER_{v} = RE_{v} - PE_{v}$$

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
Grid	The latest grid electricity	http://www.jcmindonesia.com/en/projects/projref
electricity	emission factor of the relevant	(ex-post data)
CO_2	grid	
emission		
factor		