
環境インフラ展開プラットフォーム・環境技術リスト・登録フォーム(日本語版)

項目	内容
技術名	洋上風況観測システム
技術分類	風力発電
会員企業名	一般財団法人日本気象協会
概要	BuoyLidar は、海面の波浪に伴う揺れを抑えた「低動揺型スパーブイ」に、レーザー光の反射波を捉
	えて上空の風を計測する「ドップラーライダー」を搭載した浮体式の洋上風況観測システムです。
内容	【目的】
(400 文字	洋上風力発電事業者の事業開発(事前調査、設計、工事、保守)に活用できるよう、低コスト・
以下)	高精度な洋上風況観測を可能にすることを目的としています。
	【特徴】
	・ 低動揺型スパーブイにライダーを搭載した世界初の技術により、洋上の風況を直接観測
	・ 観測鉄塔による風況観測と比べてコンパクトな設計により、低コスト化と工期短縮を実現
	・ 塩害・降雨対策など、厳しい海洋環境に対応した仕様
	・ 燃料電池により安定した電源供給を確保。5 カ月間、燃料の補給なしでの連続稼働実績
	・ 緊張係留方式により、BuoyLidar が設置地点に固定され海域を動き回らないため、漁業関係者
	への負荷を軽減
	・ ライダーに動揺補正機能を備え、海面の波浪に伴う揺れの影響を除去
	・ 洋上での乱流計測への期待(今後、陸上でのライダー観測の乱流計測技術を適用予定)
	【効果】
	山形県酒田沖の実証実験では、洋上の観測鉄塔による風況観測と比べて、約85%のコスト削減
	を実現しました。
図	ドップラーライダー
(1MB以下)	洋上風況観測システム 「BuoyLidar(ブイライダー)」
	IBUOYLIDAI (J4949—)

BuoyLidarの基本概念

参考資料	大西 健二, 上原 謙太郎, 井上 実, 小玉 亮, 洋上風況観測システム BuoyLidar の開発, 風力
	エネルギー, 2019, Vol.43, No.2, pp.202-205
	https://www.jstage.jst.go.jp/article/jwea/43/2/43_202/_pdf
対象地域	☑ 日本 □ 東南アジア □ 中央、南アジア □ 中国、東アジア □ 中東
	□ アフリカ □ オセアニア □ 欧米 □ 中南米 □ 制限なし
実績	山形県酒田沖での通算1年6カ月の実証実験の結果、「BuoyLidar」は洋上の観測鉄塔による風
	況観測と比べて、約85%のコスト削減を実現できることがわかりました。また、洋上風力発電で重要と
	なる高度 100m での観測データの取得率は 96.1%であり、長期間の安定した観測が可能であるこ
	とを確認しました。
SDGs との	1. 貧困をなくそう
関連	2. 飢餓をゼロ
	3. すべての人に健康と福祉を
	4. 質の高い教育をみんなに
	5. ジェンダー平等を実現しよう
	6. 安全な水とトイレを世界中に
	(7.) エネルギーをみんなに そしてクリーンに
	8. 働きがいも経済成長も
	9. 産業と技術革新の基盤をつくろう
	10. 人や国の不平等をなくそう
	11. 住み続けられるまちづくりを
	12. つくる責任 つかう責任
	(13) 気候変動に具体的な対策を
	14. 海の豊かさを守ろう
	15. 陸の豊かさも守ろう
	16. 平和と公正をすべての人に
	17. パートナーシップで目標を達成しよう
参照 URL	https://www.jwa.or.jp/news/2020/09/11056/