

) JFE

JFE Group Structure

KAWATETSU

Est. 1912

Est. 1951

Japan Marine United

JFE Engineering

Net Sales(million \$) 3,900

Employees 9,300

JFE Steel

Net Sales(million \$)

27,200 Employees

44,400

JFE Shoji Trade

Net Sales(million \$)

19,100Employees

6,800

Global Network

Shanghai, Beijing (China)

Smart Infrastructure for Global Environment

JCM Project Development

<u>Vietnam</u>

Waste Heat Recovery Power Generation at Cement Factory in Quang Ninh Province FS(2015)

Myanmar

Introduction of Waste to Energy Plant in Yangon City

FS(2014), Model Project(2015)

Indonesia

Power Generation by Waste-heat Recovery in Cement Industry PS(2013), Model Project(2014)

<Project 1> Power Generation by Waste-heat Recovery in Cement Industry

- Registered Project ID013,10 Jul. 2018

Project Summary

Counterpart	PT Semen Indonesia
Site	Tuban Plant, East Jawa
Power Generation	28MW
Expected GHG Reductions	149,063 tCO2/year

7

Current Project Implementation

- 14 Mar 18 Request of registration
- 30 Apr 18 Starting date of project operation
- 10 Jul 18 Registration of project

Estimated emission reductions in each year 99,375 (in 2018) 149,063 (in 2019) 149,063 (in 2020)

Expected operational lifetime: 9 years

) JFE

Project Scheme

Indonesian Government

JCM Agreement

GHG

Reductions

Semen Indonesia's Budget

JCM Subsidy from Japan

International Consortium

- ✓ Construction
- ✓ Operation
- ✓ Maintenance
- ✓ MRV

- JFE
- ✓ Engineering
- ✓ Equipment Supply

Overview of WHR System

Eligibility Criteria - Approved Methodology ID_AM001

Criterion 1	The project utilizes waste heat from a cement production facility by waste heat recovery (WHR) system to generate electricity					
Criterion 2	WHR system consists of a Suspension Preheater boiler (SP boiler) and/or Air Quenching Cooler boiler (AQC boiler), turbine generator and cooling tower					
Criterion 3	WHR system utilizes only waste heat and does not utilize fossil fuels as a heat source to generate steam for power generation					
Criterion 4	WHR system has not been introduced to a corresponding cement kiln of the project prior to its implementation					
Criterion 5	The cement factory where the project is implemented is connected to a grid system and the theoretical maximum electricity output of the WHR system, which is calculated by multiplying maximum electricity output of the WHR system by the maximum hours per year (24*365=8,760 hours), is not greater than the total amount of the electricity imported to the cement factory from the grid system: > During the previous year before the validation, if the validation of the project is conducted before the operation of the project, or > During the previous year before the operation of the project, if the validation of the project is conducted after the operation of the project					
Criterion 6	The WHR system is designed to be connected only to an internal power grid					
	of the cement factory.					
	Converight 2019 a IEE Engineering Corneration All Dights Decorned					

Calculation of Reference Emissions

		A	В	С	D	E(A*B*C*D)
_	ntity of Electricity eration	Generation Capacity (MW)	Operating day per year (days/y)	Time (hrs/day)	Operating Rate	Electricity (MWh)
	Dry Season	28	164.5	24	1	110,544
	Rainy Season	22	164.5	24	1	86,856
The quantity of electricity consumption		3.69	365	24	1	32,324
The	165,076					

$$RE_p = EG_p * EF_{grid}$$

= $165,076 \text{ MWh/y} * 0.903 \text{ tCO}_2 \text{ e/MWh}$

 $= 149,063 tCO_{2}e/y$

Potential Replication of WHR Technology

CO₂ Emission Reduction

Electricity Reserve for the Community

No Additional Fuel Required

Savings on Production Costs

Potential reduction of GHG emission: 1,150,000 tco2/y @ 25 factories in Indonesia

<Project 2> Introduction of Waste to Energy Plant in Yangon City

Approved Methodology MM_AM001

JFE

Project Summary

Project Scheme

Yangon City's Budget

JCM Subsidy from Japan

Yangon City Development Committee

International Consortium

JFE Engineering Corporation

- ✓ Operation
- ✓ Maintenance
- ✓ Monitoring
- ✓ Reporting

- ✓ Engineering
- ✓ Procurement
- ✓ Construction
- ✓ SV for commissioning

Benefit of Waste to Energy Project

Expected GHG Emission Reductions

4,732 tCO₂/ year

(2,358tCO₂ accounts for the energy-originated CO₂)

- ✓ The calculation is based on the condition of 60t of waste treated per day and operation of 310days per year, 24 hours per day (operating ratio: 85%).
- ✓ The emission factor refers to the latest CDM project in Myanmar (0.8tCO $_2$ /MWh).

2 Phase Timeline toward Paradigm Shift

Small Scale WTE
As a Model Project

Larger Scale WTE

Capacity Building, Regulation Setting, Training of WTE Operation, Finance Arranging, etc.

http://www.jfe-eng.co.jp/en/