Joint Crediting Mechanism Project Design Document Form

Note: This JCM Project Design Document (PDD) is drafted as the result of the GEC's JCM Feasibility Study Programme in JFY2013. Therefore, this draft PDD is not officially approved by any governments involved in JCM, and is subject to change in the future.

A. Project description

A.1. Title of the JCM project

Centralization of heat supply system by installation of high efficiency Heat Only Boiler in Bornuur soum

A.2. General description of project and applied technologies and/or measures

The Bornuur is located in the north of Tuv province, 105 km distant from Ulaanbaatar and 155

km from center of Tuv province.

The altitude of the soum is 1000-1500 m above the sea level. In terms of the earthquake, the soum is in 7 magnitudes area. The soum is harmonious for agriculture and animal husbandry because the location of the soum is in the zone of forest steppe natural.

The summer of the Bornuur soum is cool and dry and the winter is cold. The monthly average temperature in January is -30 °C and +30 °C in July. The annual average precipitation is 250 - 350 mm.

The total territory of the soum is 114,687 hectares. About 70% of the land is being used for agricultural purpose, 26% is forest reserve and 0.08% represents water resources. As of 2012, about 2.37% of land is in urban areas, 0.11% is in special use territory and 0.92% is covered by roads and networks.

At the end of 2012, the total soum population was 4,825 and the number of households reached 1,387. The population of the soum center was 1,019. The soum is divided into 4 bags (residential districts), the smallest administrative unit.

The total livestock population is 93,153 heads. About 0.05% of them is camel, 7.4% is horse, 12.7% is cow, 44.4% is sheep and 35.4% is goat.

Table 1 Harvest volume (as of 2012)			
Types of harvest	Planted area, hectare	harvest, tons	
Wheat	1,500	1,310	
Potato	740	15,354	

Table 1	Harvest	Volume	(as	of 2012)	
---------	---------	--------	-----	----------	--

Vegetable	460	5,352
Fodder	1,680	2,576

The soum center is connected to Central grid. It has access to 110/35/10 kW substation and clean water supply. There are 6 wells and 3 water reservoirs with volume of 16 m3 each. As for the drinking water supply, water softening equipment with capacity 30 m3/day was installed.

In the soum center, buildings of local government, health center, cultural center, kindergarten and secondary school have own Heat Only Boilers (HOB).

The soum secondary school, which has 2-story building, has 880 students and 79 teachers. As for kindergarten, there are 234 children and 21 workers. Unfortunately, the building of the kindergarten is in very bad condition. The building needs total refurbishment.

The health center, which has built in 1978 and now has 13 beds, has total of 29 staff, including 4 doctors and 7 nurses.

The soum cultural center, which was constructed in 1959 with 250 seats, is operated by 8 workers. The building needs renovation.

The local government building was constructed in 1959 and needs renovation as well.

In the end of 2013, there are seven HOBs in Bornuur soum. These seven HOBs are four vertical type boilers, two brick boilers and one small size boiler.

Facilities Name	Type of HOB	Remark
School	D-27	Brick Boiler
Dormitory	НР25Ж	Vertical Type Boiler
Kindergarten	D-27	Brick Boiler
Cultural center	CLSG	Vertical Type Boiler
Local governor's office	POP-90	Small Size Boiler
Old hospital	НР15Ж	Vertical Type Boiler
New hospital	LSH	Vertical Type Boiler
	•	•

HOB of school in Bornuur soum

HOB of Dormitory in Bornuur soum

Figure 2 Photo of HOB in Bornuur soum

The project is the infrastructure building in Bornuur soum of Tuv aimag in Mongolia, composed of the installation of Heat Only Boilers (HOBs) as well as pipe laying work, electrical construction and boiler building construction.

The project will alter the current heat supply system in Bornuur soum of individual building based heating, under which the low efficiency HOBs and stoves are used.

The replacement of low efficiency HOB with EKOEFEKT (650 kW, high efficiency HOB) leads to CO2 and other air pollutants emission reductions.

The EKOEFEKT BIO 130-600 boilers are designed for comfortable, ecological and economical heating with minimal requirements for manual operation. The boiler operator checks the boiler occasionally, adds fuel and takes out the ash. Fuel is automatically fed from the hopper to the rotary grate. The amount of fuel on the grate is optimized, burning only the minimum amount required to cover the heat demand of the building at the time.

The monitoring equipment which measures the exhaust gas temperature or the exhaust gas O2 concentration is introduced. The Japanese engineer implemented the technical guidance optimizing the operation of the boiler from these measurement results.

Country	Mongolia
Region/State/Province etc.:	Tuv aimag
City/Town/Community etc:	Bornuur soum
Latitude, longitude	Latitude : 48° 27' 53"
-	Logitude : 106° 15' 26"

A.3. Location of project, including coordinates

A.4. Name of project participants

Mongolia	ANU-SERVICE CO.,LTD.
Japan	SUURI-KEIKAKU CO.,LTD.

A.5. Duration

Starting date of project operation	2013/08/28
Expected operational lifetime of project	7 years (Operational lifetime of HOB is 15 years)

A.6. Contribution from developed countries

Japanese experts of SUURI-KEIKAKU CO., LTD will support the development of telemeter system such as the remote control and automatic record, as the core of MRV activities of JCM. SUURI-KEIKAKU CO., LTD introduces the monitoring equipment which measures exhaust gas temperature or exhaust gas O₂ concentration, and etc.. The Japanese engineer performs the technical guidance optimizing the operation of the boiler from these measurement results. Japanese side provides financial support to the project.

There are few CDM project in Mongolia. Therefore, there is little experience from the development of the monitoring plan to making the monitoring report. Since EEC is the dominant candidate of the monitoring entity, our Japanese Team implements the capacity development of the monitoring activity to the EEC staffs.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)		
Selected approved methodology No.		
Version number		
Selected approved methodology No.		
Version number		
Selected approved methodology No.		
Version number		

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

Eligibility	Descriptions specified in the	Project information
criteria	methodology	
Criterion 1	The technology to be employed in this methodology is coal-fired heat only boiler (HOB) for heat water	The purpose of the boilers is to heat school, hospital, kindergarten and cultural center and local governor's office and etc The boilers are hot water low pressure

	supply system.	automatic boilers and design coal (5-25) mm burning only	ned for brown y.
Criterion 2	The HOB to target for the project activity is defined as a boiler used for heat supply which has capacity of 0.10 MW – 3.15MW.	Three high efficient coal fire EKOEFEKT 600 with capac kW each, are being installed site.	ed boilers city of 600 at project
	The project activity encompasses installation of new HOB, replacement of the existing coal-fired one and expansion of the capacity for the existing coal-fired one.	The three new high efficient HOBs EKOEFECT of capacity 600 kW each will replace 7 old small inefficient boilers.	
		Power output	600 kW
Criterion 3		Optimal regulation of power output	250 - 600 kW
		Consuption of fuel	70 - 150 kg/h
		Heated space	15000 m3
		Efficiency	80%
		Hopper capacity	1200 kg
		Max oparating pressure of hot water	200 kPa
		Max temperature of hot water	95 °C
		The noise of the ventilator	75 dB
		Boiler weight	5500 kg
		Bolier height	2800 mm

		Boiler width	1700 mm
		Bolier depth	3500 mm
		Input/output water	125 DN mm
		Diameter of flue gas pipe	200 mm
		Flue gas temperature	110 - 230 °C
		Exhaus gas mass flow	0,50 kg/s
		Power consuption/	2300 / 400
		Operation voltage	W/V
		Water volume	26001
Criterion 4	The project HOBs have dust collectors. In case of a HOB which dust collector is not set up, dust collector is additionally installed with the installed HOB for pollution-abatement measure.	The EKOEFEKT-600 boile designed with separate du capacity 500 kg	rs are st collector of
Criterion 5	Boiler operation manual and maintenance manual is established.	The manual of boiler operation will be prepared in Mongolian language.	
Criterion 6	The catalogue value of boiler efficiency of project HOB is more than 75%.	The catalogue value of EKOEFEKT is 80%.	
	One of the following technologies	• The boiler has the func	tion to feed
	is applied to project HOB.	uniformly coal on the s	toker.
	• The boiler has the function to	Fuel is automatically fed from the hopper	
	feed uniformly coal on the	to the rotary grate. The amount of fuel on	
Criterion 7	• The boiler has the adjustment	minimum amount required to cover the	
	system of the combustion air	heat demand of the building at the time	
	• The boiler has the function for	Fuel supply is regulated by	a control unit
	preventing air-invasion into the	which takes into account the	e energy
	furnace.	requirements of the boiler.	
		• The boiler has the adju	stment system

of the combustion air.
In order to ensure the complete
combustion of flammable substances
contained in the fuel, a sufficient amount
of air is supplied to the combustion
chamber.
• The boiler has the function for
preventing air-invasion into the
furnace.
The chamber is coated with a ceramic
lining which ensures a high efficiency of
combustion. The supply of primary air
for combustion is provided by an exhaust
fan which is located at the throat of the
chimney. The boiler works at a low
pressure due to a ventilator draft.

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions		
Emission sources	GHG type	
Coal Consumption of reference HOB	CO ₂	
N/A	N/A	
Project emissions		
Emission sources	GHG type	
Coal Consumption of project HOB	CO ₂	
Electricity Consumption of project HOB	CO ₂	
N/A	N/A	
N/A	N/A	
N/A	N/A	

JCM_MN_F_PDD_ver01.0

N/A	N/A
N/A	N/A

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

The emission sources are coal consumption in HOB. The monitoring equipment is the heat meter which measures the quantity of net heat supply of HOB.

C.3. Estimated emissions reductions in each year

Year	Estimated Reference	Estimated Project	Estimated Emission
	emissions (tCO _{2e})	Emissions (tCO _{2e})	Reductions (tCO _{2e})
2013	0	0	0
2014	2,146	1,780	366
2015	2,146	1,780	366
2016	2,146	1,780	366
2017	2,146	1,780	366
2018	2,146	1,780	366
2019	2,146	1,780	366
2020	2,146	1,780	366
Total	15,022	12,460	2,562
(tCO _{2e})			

D. Environmental impact assessment	
Legal requirement of environmental impact assessment for	This JCM project is deemed to be
the proposed project	necessary to implement the
	detailed natural environment
	impact assessment, from
	following reasons;
	1) The influence on the natural
	environments is established by
	being based on the detailed
	environment impact assessment.
	2) The situation that project
	capacity (3.0MW / h) exceeds the
	required amount of heat (0.9 MW
	/ h) needs to be confirmed.
	3) It is necessary to check the
	actual natural environment basic
	situation of the JCM project area.
	4) Confirmation of the expert is
	required about the design
	drawing of the boiler building.
	5) The natural environment
	conservation assessment and
	conclusion is put regarding
	technology choices of the boiler.

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

Date: from 13:30 to 15:00, 26th September 2013

Place: Culture Center in Bornuur soum

Participants: 67 people of living and/or working in Bornuur soum, and 57 people of questionnaire response.

Handout: Questionnaire (Mongolian language), Outline of JCM (Mongolian language) Agenda:

1) Outline of JCM (Mr. Kuwahara),

2) Background and progress situation of JCM Project (Mr. Kuwahara),

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments received
Male "A"	Is there the possibility to use the	Since coal is abundant in Mongolia,
	other fuel other than the coal?	we do not worry the supply of coal,
		and the price of coal is very low. As a
		result, the fuel choice is only coal.
Male "B"	Is this infrastructure of HOB system	Three EKOEFEKT boilers, which
	enough for heat supply in whole of	have 650 kW capacities, are enough
	Bornuur soum?	for heat supply. Since the boiler

		house has enough space, the
		expansion of HOBs is possible in the
		future.
Male "C"	Does this infrastructure include the	This JCM project is only the
	water supply and sewerage systems?	infrastructure of HOB system, which
		is only the heat supply system.
		In the future, we will consider the
		other infrastructure such as water
		supply and sewerage systems, etc
Female "D"	Can we receive the service of the	If you prepare your own money, then
	heat supply, if we are living in	we can do the heat supply for your
	Bornuur soum and we prepare at own	home.
	expense?	
Female "D"	Will the HOB be operated enough	We will realize the stable operation
	stably?	of HOB in the future.
N/A	N/A	N/A
N/A	N/A	N/A

F. References

Reference lists to support descriptions in the PDD, if any.

A	n	n	eх
			- · · ·

Revision history of PDD			
Version	Date	Contents revised	
01.0	21/02/2014	First edition	