Importance of Information Management for Environmentally Sound Technologies (ESTs) Transfer (UNEP/GEC Session)

Reuse of Seawater for Flue Gas Desulfurization

-Its Practical Information From An Engineering Point Of View-

> FGD Project Headquarters Fujikasui Engineering Co., Ltd.

- 1) Must-Know Facts (Basic & Significant Knowledge)
- 2) Taking A Look At Seawater
- 3) Simplified Schematic Diagram
- 4) An Outlook On Installation Of Seawater FGD
- 5) <u>Perspectives On Reuse & Recycling Technology</u> <u>Toward Sustainable Environmental Development In</u> <u>Thailand</u>

- 1) Must-Know Facts (Basic & Significant Knowledge)
- 2) Taking A Look At Seawater
- 3) Simplified Schematic Diagram
- 4) An Outlook On Installation Of Seawater FGD
- 5) <u>Perspectives On Reuse & Recycling Technology</u> <u>Toward Sustainable Environmental Development In</u> <u>Thailand</u>

- **◆** Combustion of fossil fuels (e.g., coal and oil) → resulting in emissions of sulfur dioxide (SO₂), which can harm human health and deteriorate environments (acid deposition)
- ◆ Thailand's power generation capacity → 25,380 MWe (2002)

 $\triangle \sim 20,000 MWe (being expanded)$

45,420 MWe (forecast for 2016)

◆ As available worldwide together with its low cost, coal → still playing a significant role in power generation

Total World Electricity Generation (2001)

- <u>Coal</u>	<u>38.7%</u> <	
- Gas	18.3%	
- Nuclear	17.1%	SO ₂ Emission
- Hydro	16.6%	
- <u>Oil</u>	7.5%	Thailand's dependence on natural gas → 80% of its
- Others	1.8%	electricity generation

- ◆ Also, more stringent environmental regulations on SO₂ emissions → being promulgated in both public sectors (power generating facilities) and private sectors (industrial boilers)
- ♦ An effective approach to removing SO_2 from combustion exhaust gas → use of a FGD (*Flue Gas Desulfurization*) system

- 1) Must-Know Facts (Basic & Significant Knowledge)
- 2) Taking A Look At Seawater
- 3) Simplified Schematic Diagram
- 4) An Outlook On Installation Of Seawater FGD
- 5) <u>Perspectives On Reuse & Recycling Technology</u> <u>Toward Sustainable Environmental Development In</u> <u>Thailand</u>

Typical Seawater

Major Constituent	g/kg
Cl^-	19.35
Na^+	<i>10.76</i>
SO_4^{2-}	<i>2.71</i>
Mg^{2+}	1.29
Ca^{2+}	0.41
K^+	0.40
HCO_3^-	0.14

- ♦ Seawater → used as a medium in the cooling system and basically having a pH value of 7.6-8.4 with an inherent alkalinity of approx. 100-110 mg/L as CaCO3 (in terms of CO_3^{2-} and HCO_3^{-})
- **♦** Taking into consideration an amount of the sulfur (S) composition existing in seawater → <u>approx. 0.9 kgS pristinely present in every ton of seawater</u>

How is it possible to remove SO_2 in the flue gas by the use of seawater and then return the seawater effluent to the seawater body?

- 1) Must-Know Facts (Basic & Significant Knowledge)
- 2) Taking A Look At Seawater
- 3) Simplified Schematic Diagram
- 4) An Outlook On Installation Of Seawater FGD
- 5) <u>Perspectives On Reuse & Recycling Technology</u> <u>Toward Sustainable Environmental Development In</u> <u>Thailand</u>

Simplified Schematic Diagram of Seawater FGD System

- 1) Must-Know Facts (Basic & Significant Knowledge)
- 2) Taking A Look At Seawater
- 3) Simplified Schematic Diagram
- 4) An Outlook On Installation Of Seawater FGD
- 5) <u>Perspectives On Reuse & Recycling Technology</u> <u>Toward Sustainable Environmental Development In</u> <u>Thailand</u>

Worldwide Statistics of Seawater FGD System

Practical ApplicationMWe19981,360

(accounting for only 0.6% of the total FGD application)

2004 approx. 16,000

Seawater FGD Application → considered as a promising technology environmentally sound from an engineering point of view

- 1) Must-Know Facts (Basic & Significant Knowledge)
- 2) Taking A Look At Seawater
- 3) Simplified Schematic Diagram
- 4) An Outlook On Installation Of Seawater FGD
- 5) <u>Perspectives On Reuse & Recycling Technology</u> <u>Toward Sustainable Environmental Development In</u> <u>Thailand</u>

♦ Wastewater-Related

Giving a benefit as another source of energy (in terms of CH_4) \rightarrow upflow anaerobic sludge blanket (UASB) systems becoming more practically familiar in Thailand in both large scale and small scale

♦ Waste-Related

Harnessing energy by the use of agricultural residues (e.g., rice husk, bagasse, coconut husk and sawdust) → becoming more common nationwide

♦ FGD-Related

To put this technology in a more practice both in large-sized scale and small-sized scale → a fundamental framework

- 1) Dissemination (and communication) of accurate & practical information → necessary
- 2) Intervention of the government through the creation of stricter emission requirements and incentives contributing to the application & development

Thank You

Tel: (81)-3-3445-1713

Fax: (81)-3-3445-1091