MOEJ/GEC JCM Feasibility Study (FS) 2013 Final Report

Geothermal Binary Power Generation

(implemented by Nippon Koei Co., Ltd.)

Study partners		Hen Linn San Co., Ltd. (HLS)			
Project site		Myanmar/Tachileik			
Category of project		Renewable Energy			
Category of project Description of project		Myanmar is endowed with numerous geothermal resources, and many of the geothermal potential sites are distributed in the northeast region bordered on the south by Thailand. These huge geothermal resources still remain undeveloped. Tachileik Township and surrounding area of Shan State in northeast region of Myanmar is experiencing rapid development due to the recent opening policy of Myanmar. However, this area has severe power shortage, and frequent blackouts harm economic activities. Since all electricity consumed in this area is imported from Thailand, Myanmar side would like to have its own stable energy sources. Hence, this project aims to develop a geothermal binary power plant, expecting power generation of around 200 kW, to supply electricity to Tachileik Township. This project will pioneer power generation in Myanmar and contribute to poverty reduction of this area.			
JCM methodology	Eligibility criteria	 Four eligibility criteria of JCM (Joint Crediting Mechanism) methodology are as follows: [Criteria 1] Geothermal binary power plants [Criteria 2] Contracting with analysis agency for periodic monitoring of CO₂ and CH₄ concentration in steam produced by the geothermal plant., if production wells are applied. [Criteria 3] Conducting annual monitoring of refilled amount of secondary medium, when the secondary medium is GHG listed in IPPC Assessment Report. [Criteria 4] Having at least one year warranty offered by a manufacturer of a product or engineering company, and conducting annual maintenance of the power plant and incidental facilities. 			
	Default values	 In this methodology, default values are set as follows: a) Grid emission factor : 0.371 [tCO2/MWh] b) Emission factor for diesel generation (mid size) : 0.56 [kg CO2/MWh] c) Emission factor for diesel generation (mid size) : 0.76 [kg CO2/MWh] d) GWP of secondary medium (HFC245fa) : 1,030 [tCO2e/tHFC-245fa] 			
Calculation of reference emissions		In this methodology, the following three (3) scenarios are proposed for calculating reference emissions: [Scenario 1] The Myanmar grid is extended, and the electricity is provided through the grid to the project area. [Scenario 2] Middle-size diesel generator is introduced and			

[Scenario 3] Small-size diesel generator is introduc	hac be		
electricity is provided to each house directly.	cu, anu		
Monitoring Monitoring for reference emissions :			
Power generation of binary power plant s	hall be		
method monitored in all scenarios.			
Monitoring for project emissions:			
Monitoring items: (i) CO2&CH4 concentrations ir	i steam,		
(ii) steam volume and (iii) filling volume of se	condary		
medium.	(400		
GHG emission reduction	00 (468		
and grid emission factor (0.371 [tCO2/MW/b])	vivvii/y])		
This Project can contribute to GHG reduction by off	set with		
Environmental impacts	and hot		
water for geothermal binary power generation is pr	incipally		
returned through injection wells, geothermal binar	/ power		
generation is a closed system, and air/water pol	ution is		
negligible.			
In general, produced noise and heat by power genera	tion and		
changes in scenic view are considerable negative im	pacts of		
geothermal power generation. However, since the pro	ject site		
Is located about 2 km from the hearest village, holse	is located about 2 km from the nearest village, noise for the		
mill drying facilities. Although some chapges of sce			
are unavoidable negative impact such as cutting tr			
can be minimized by the layout of the plant design.	000 010.		
The Project aims to develop a 200 kW binary power	plant in		
the rural area approximately 8.2 km northwest of 7	achileik		
Township. The construction and operation of the pow	er plant		
is expected to start in 2015 and 2017, resp	ectively.		
Construction cost is estimated at around 535 million J	PY. This		
project will pioneer geothermal power generation in M	yanmar.		
Promotion of Japanese Geothermal binary technology has already been de	/eloped,		
technologies			
Japanese manufacturers can provide an apr	s. mus, monriate		
follow-up system including maintenance servic	es and		
technology transfer of operation and maintenance	to the		
owner. Japanese manufacturers are much superior	owner. Japanese manufacturers are much superior to other		
manufacturers in post-warranty O&M performance.			
Sustainable development in host Myanmar government is promoting the develop	nent of		
renewable energy to meet rapidly growing power of	temand.		
East Shan state including Lachileik township ha	is huge		
potential of geothermal resources. The success of this			
will accelerate upmestic power sustainability,	oik and		
will contribute to GHG reduction by replacing diese	el nower		
generation.			

JCM Feasibility Study (FS) 2013 "Geothermal Binary Power Generation"

(Host country: Republic of the Union of Myanmar)

Study Entity: Nippon Koei Co., Ltd.

1. Study Implementation Scheme

This study was carried out by the following scheme:

Entities	<u>Country</u>	<u>Study</u>
Nippon Koei Co., Ltd.	Japan	Feasibility Study Consultant
Associates:		
Hein Linn San Co., Ltd.	Myanmar	Owner of the Project
Fuji Electric Co., Ltd.	Japan	Conceptual design, estimates
Geothermal Engineering Co., Ltd.	Japan	Geothermal reservoir analysis
Electrum Services Co., Ltd.	Myanmar	Electric exploration
SGS Thailand	Thailand	Geochemical analysis

2. Overview of Proposed JCM Project

(1) Description of Project Contents:

Myanmar is endowed with numerous geothermal resources, and many of the geothermal potential sites are distributed in the northeast region bordered on the south by Thailand. These huge geothermal resources still remain undeveloped.

Tachileik Township and surrounding area of Shan State in northeast region of Myanmar is experiencing rapid development due to the recent opening policy of Myanmar. However, this area has severe power shortage, and a frequent blackouts harm economic activities. Since all electricity consumed in this area is imported from Thailand, Myanmar side would like to have its own stable energy sources.

Hence, this project aims to develop a geothermal binary power plant, expecting power generation of around 200 kW, to supply electricity to Tachileik Township. This project will pioneer power generation in Myanmar, and contribute to poverty reduction of this area.

The success of this project will accelerate domestic power sustainability, develop geothermal power in the surrounding area of Tachileik, and will contribute to GHG reduction by replacing diesel power generation. An overview of the Project is shown in Table 1.

Location	East Shan State, Tachileik township
Type, generation capacity	Geothermal binary power generation, around 200 kW
Counterpart/Owner	Hein Lien San Co., Ltd. (HLS)
Project Description	The Project aims to develop a 200 kW geothermal binary plant in the rural area approximately 8.2 km northeast of the Tachileik Township, The operation is expected to start from 2017. Total construction cost is about 535 million Yen. This project will pioneer geothermal power generation in Myanmar.

Table 1 Overview of the Project

Source: Study Team

(2) Situation of Host Country:

In Myanmar, there are 30 power plants (19 hydropower, 1 coal and 10 gas/steam) and electrical power generation capacity is 3,584 MW as of June 2012. About 70% of the power is generated by hydropower plants. Energy demand in Myanmar has risen steadily over the past 10 years. To meet rapidly increasing power needs, Myanmar government intends to formulate the best mix of advantages of power energy sources in addition to strengthening hydroelectric infrastructure. Renewable energy is expected to be rapidly developed, and become 15%-20% of total electricity generation by 2020.

3. Study Contents

(1) JCM METHODOLOGY DEVELOPMENT

a. Eligibility criteria

	Issues		Studies implemented
-	Current situation of geothermal binary power	-	Interview with manufacturers and engineering
	plant market and foreign/domestic manufacturers		companies
-	Differences of technology, function and	-	Data collection of Japan/foreign technologies
	maintenance between Japanese and foreign		on geothermal binary power plants
	manufacturers	-	Pre-confirmation of geothermal binary
-	Handling of NCG and secondary medium in		power plants
	binary power plants	-	Confirmation of NCG and secondary medium
			in binary power plants

Source: Study Team

In this methodology, the following eligibility criteria are proposed.

Eligibility Criteria	Reasons
Criterion 1:	There are several types of geothermal power plants.
The project activity is installation of geothermal	So plant shall be defined properly.
binary power plant.	
Criterion 2:	There are several types of chemical substances
Contract is made for regular monitoring of CO ₂	involved in geothermal steam. Normally the steam
and CH ₄ concentrations in the produced steam	contains NCG and shall be monitored whether
with the chemical analysis company. Criterion 2 is	GHGs are in NCG or not. Therefore, it is necessary
applied only in case that the steam obtained from a	to make a contract for regular monitoring of CO ₂ and
newly drilled well is used to heat the secondary	CH ₄ concentrations in the produced steam with the
fluid.	chemical analysis company.
	In addition, Criterion 2 is applied since the steam is
	obtained from a newly drilled well and is used to
	heat the secondary fluid.
Criterion 3:	Normally there is no leakage of secondary medium
In case the secondary fluid is listed in the	in geothermal binary power plant. However, it is
Assessment Report published by IPCC, a	difficult to state whether Japanese product leak or
monitoring plan to check the refilled amount of	not.
secondary fluid to the geothermal binary power	In order to consider this item conservatively, it is
plant is prepared. The minimum frequency of the	necessary to check the refilled amount of secondary
monitoring is once per year.	fluid at the geothermal binary power plant.
Criterion 4:	To maintain good performance by power plant, it is
The geothermal binary power plant is guaranteed	necessary to conduct periodic maintenance.
for more than one year by the manufacturer and/or	According to the engineering company, once in year
the engineering company, and yearly maintenance	is normal frequency for the maintenance contract.
plan for the geothermal binary power unit as well	
as ancillary facility is prepared.	

Source: Study Team

b. Data and parameters fixed ex ante

	Issues		Studies implemented
-	Consideration of data and parameters to be	-	Identification of required data & parameters
	collected	-	Confirmation of CO2 and CH4 concentration in
-	Consideration of CO ₂ and CH ₄ concentration		case of CDM registration
-	Consideration of Myanmar national grid	-	Calculation of Myanmar national grid
	emissions		emissions

Source: Study Team

b-1. Default values

Emission factor for Myanmar national Grid

In this methodology, 0.371 [tCO2/MWh] is used as emission factor of Myanmar national grid.

According to item ③ Calculation of emission reduction, JCM methodology proposes the concept of suppressed demand to be applied. Hence, the reference scenario is set as the base scenario including future anthropogenic emissions which are projected to rise above current levels.

Normally value of grid emission factor is used for that of combined margin emissions. CM emission is calculated with OM and BM emissions under the following options:

- a. Weighted CM
- b. Simplified CM

To apply simplified CM, it is required to confirm that (i) project is located in Least Developed Country (LDC), (ii) number of total CDM registrations is less than 10 or an island state, and (iii) data is not sufficient for BM calculation.

For this Project, Myanmar belongs to LDC regarding calculation of grid emission factor. Also, there is insufficient data for BM calculation, but there is enough data for OM calculation. Therefore, in this case, item ② above is the proper choice. Accordingly, calculation of Myanmar grid emission factor is referred to as "Simplified CM".

CM emission factor can be calculated using the following table.

 $EF_{CM,y} \qquad \qquad = W_{OM} \times EF_{OM,y} + W_{BM} \times EF_{BM,y}$

 $= 1 \times EF_{OM,y} + 0 \times EF_{BM,y}$

 $= EF_{OM,y}$

OM emissions							
Year	2010	2011	2012	Average (2010-2012)			
CO ₂ emissions (tCO2)	2,426,383	3,351,111	3,644,442				
EG_{y} (MWh)	6,873,000	8,839,862	9,537,685				
EF _{OM, y} (tCO2/MWh)	0.353	0.379	0.382	0.371			

- - -

Source: GEC CDM Study in FY2013

b-2. Preliminary Default Value

Secondary medium (GWP, 100 years) is set as preliminary default value. In this project, HFC245fa

(1030 tCO₂e/tHFC-245fa) is applied.

Issues		Studies implemented		
-	Consideration of suppressed demand in	-	Confirmation of suppressed demand in	
	Myanmar		Myanmar	
-	Consideration of current situation and future	-	Study of current situation and future	
	electrification plan in whole Myanmar and		electrification plan in whole Myanmar and	
	project area.		project area.	
-	Consideration of BAU and reference emissions,	-	Establishment of BAU and reference emissions	
	taking account of Myanmar electrification plan	-	Establishment of handling with NCG and	
-	Examine handling of NCG and secondary		secondary medium	
	medium			
	Courses Charles Trans			

c. Calculation of GHG emissions (including reference and project emissions)

Source: Study Team

In this project, geothermal binary power plant will connect to Thai grid and support emission reduction of Thai grid. Under JCM scheme, such situation will not be considered.

c-1. Establishment of Reference Scenario

In this methodology, the concept of suppressed demand is applied. The reference scenario is set as the base scenario including future anthropogenic emissions which are projected to rise above current levels. Based on the above, reference scenarios of this methodology are as follows:

- [Scenario 1] The Myanmar grid is extended, and the electricity is provided through the grid to the project area.
- [Scenario 2] Middle-size diesel generator is introduced, and the electricity is provided as off-grid power source.
- [Scenario 3] Small-size diesel generator is introduced, and the electricity is provided to each house directly.

c-2. Calculation of Reference Emissions

Reference emissions are calculated with the following formula.

 $\frac{RE = EF_{grid} * EG_{PJ}}{RE : Reference \ emissions \ [tCO_2/y]}$ $EF_{grid} : Grid \ factor \ in \ Myanmar \ [tCO_2/MWh]$ $EG_{PJ} : Electricity \ exported \ from \ the \ project \ [MWh]$

c-3. Calculation of Project Emissions

Project emissions are calculated with the following formula.

 $\underline{PE = PE_{NCG} + PE_{BM} = (W_{s,CO2} + W_{s,CH4} * GWP_{CH4}) * M_s + M_{BM} * GWP_{BM}}$

PE :Project emissions [tCO_2e/y] PE_{NCG}:Project emissions due to the release of NCG [tCO_2e/y] PE_{BM}:Project emissions due to the release of secondary fluid [tCO_2e/y] W_{s,CO2}: Average mass fraction of CO₂ in the produced steam [tCO₂/t steam]
W_{s,CH4}: Average mass fraction of CH₄ in the produced steam [tCH₄/t steam]
GWP_{CH4}: GWP of CH₄ [tCO₂e/tCH₄]
M_s: Quantity of produced steam [t steam/y]
M_{BM}: Quantity of secondary fluid filled into the plant [t/y]
GWP_{BM}: GWP of secondary fluid [tCO₂e/tBM]
* In case that the hot spring naturally discharging without drilling of new well is used, or hot water is used: PE_{NCG} = 0

c-4. Estimation of Emission Reduction

Emission reduction by geothermal binary power plant in 2017 is calculated below.

Reference emissions	Project emissions	Emission reduction	
[tCO2/y]	[tCO2e/y]	[tCO2e/y]	
1,059	0	1,059	

Source: Study Team

Note : This project uses hot water, therefore $PE_{NCG} = 0$. Also, it is difficult to identify PE_{BM} currently, so $PE_{BM} = 0$.

(2) DEVELOPMENT OF JCM PROJECT DESIGN DOCUMENT (PDD)

a. Monitoring Plan

Parameter	Monitoring Method		
Power generation (MWh/y)	Measurement: Monitoring sending out put automatically and constantly.		
	Recording: Saving data (daily data and monthly data) in PC		
Replenishment volume of secondary	Measurement: Collection and check of annual maintenance data of replenishment		
working fluid (t/y)	volume of secondary working fluid from maintenance companies.		
	Recording: Saving data in PC		

Note: Monitoring of $W_{s,CO2}$ and $W_{s,CH4}$ is not necessary for binary power plant.

Source: Study Team

Mentoring plan of the Project is shown in Figure 1.

Figure 1 Monitoring Plan Source: Study Team

(3) PROJECT DEVELOPMENT AND IMPLEMENTATION

a. Project organization and plan

Planned project organization is shown in Figure 2. Special purpose company (SPC) will be established under HLS to operate and manage the facility.

Condition of the geothermal brine is estimated based on the results geochemical survey, electric exploratory survey, and interview with staff of Fang Geothermal Power Station. Design concept of geothermal binary plant is shown in Table 2. Each parameter in the Table will be reviewed based on the results of test wells and field tests to be carried out in the next stage.

Binary Power Plan	t	Loc.2	Remarks	
Condition of	Pressure	[barg]	1.5	
geothermal brine	Temperature	[deg.C]	130	
	Volume	[L/min]	2000	3 production wells (source: Fang)
	pH	[-]	9.13	
	SiO2	[mg/L]	607	
Output	Temperature	[deg.C]	95	
Cooling water	cooling type water		r cooled type	
	Temperature	[deg.C	25	
	Volume	[t/h]	300	
	Supplimentary feed water	[t/h]	11	
Power generation	Generating end output	[kW]	295	5 unit x 59 kw
	Plant consumption	[kW]	115	
	Sending end output	[kW]	180	
Plant Construction Cost		[Mil¥]	300	
Cost for Civil work, transmission line, etc.		[Mil¥]	235	
	So	ource: Study Team	1	

 Table 2 Design Concept of Geothermal Binary Plant

Although this project might be conducted by the owner's finance alone, the benefits of financing of JICA Overseas Investment/Loan and JBIC Overseas Investment/Loan will also be studied in the next stage. Recommended project schedule is shown in Table 3.

Cost Items			2014	2015	2016	2015	1
Category	Item	Sub-item	2014	2015	2016	2017	
Additional Geolog	ical Survey						
	Survey						
		Geo-physical					
		Geo-chemical					
Geothermal Exploration							
	Test wells						
	Field tests, Evalu	ation					
		Evaluation					
Geotehrmal Exploit	tation	•					<u>ы / </u>
	Production well, Discharging well		L			On	eration
		Production					_ /
		Re-injection					IV I
	Field tests, Evaluation					O&M	Stage
		Evaluation	4	FS Geothermal Plant 🛛 🔺 F	inancial Analysis		
Construction							
	Civil, Architecht						
	Power Plant						
	Others						
	Transmission line	e					
Land acquisition							
Permission							
Permission			-	-			
EIA				(

 Table 3 Recommended Project Schedule

Source: Study Team

b. MRV structure

Measurement (M) and Reporting (R) of GHG emission will be principally done by the owner of the Project. Nippon Koei staff will support the activities for one year from the beginning of the operation stage. Verification (V) will be carried out by the third party at the Project site according to the Joint Crediting Mechanism Guideline for Validation and Verification.

MRV structure is shown in Figure 3.

Figure 3 MRV Structure Source: Study Team

c. Permission and authorization for the project implementation

Ministry of Electric Power (MOEP) is the administrative agency of the power sector in Myanmar, and responsible for electric power generation, transmission and distribution. Although regulations for development of geothermal power still remain unclear because there are no experiences of development of geothermal plants, Myanmar Electric Power Enterprise (MEPE), an organization of MOEP appears to be the supervisory authority of small-scale geothermal power generation.

According to Union of Myanmar Foreign Investment Law (2012), the regulations issued from Myanmar Investment Committee, IPP projects are allowed for private investors, although the detailed regulations has not been enforced yet and EIA procedures still remain unclear.

d. Japan's contribution

Geothermal binary technology has been already developed, and there will be only small differences in generation performance from Japanese geothermal power plants. Thus, Japanese manufacturers can provide an appropriate follow-up system including maintenance services and technology transfer of operation and maintenance to the owner. Japanese manufacturers are much superior to other manufacturers in post- warranty O&M performance.

Tachileik Township and surrounding area of Shan State in northeast region of Myanmar is experiencing rapid development due to the recent opening policy of Myanmar. However, this area has severe power shortage, and frequent blackouts harm economic activities. Furthermore, many rural areas still remain unelectrified. This project will contribute not only to stable power supply to Tachileik Township, but also to electrification of the rural area and poverty reduction.

e. Environmental integrity

This project will contribute to GHG reduction by replacing diesel power generation. Since produced steam of binary cycle system is principally fed back into the ground, binary power plants produce nearly zero emission.

In general, produced noise (60dBA~75dBA in general), heat by power generation, and changes of scenic view are considerable negative impacts of geothermal power generation. However, since the project site is located about 2 km from the nearest village, noise for the residents will be negligible. The heat is available for sauna or mill drying facilities. Although some changes of scenic view is unavoidable, negative impact such as cutting trees etc., can be minimized by the layout of the plant design.

f. Sustainable development in host country

Myanmar government is promoting the development of renewable energy to meet rapidly growing power demand. In Myanmar, at total of 93 hot springs have so far been recorded and identified, and geothermal resources are likely widespread in igneous rock regions and metamorphosed areas where ground water heated at depths has ascended through faults, and fractures (source: Myanmar Engineering Society). In Shan State, 17 hot springs were identified (source: Geology of Burma, 1934). Although East Shan State including Tachileik Township has huge potential of geothermal

resources, no comprehensive survey of geothermal potential of this area has been carried out. This project will pioneer the development of geothermal power plants in Myanmar. The success of this project will accelerate to develop geothermal energy in the surrounding area of Tachileik, and contribute to GHG reduction.

g. Toward project realisation (planned schedule and possible obstacles to be overcome)

Initial investment is high for geothermal development in general and drilling risks of geothermal wells are inevitable, especially in the initial stage. Thus for development of the Project, the following processes are recommended.

Recommendation-1: Feasibility Study including Test wells

Feasibility study including test wells of 200 m in depth are recommended before production well & injection well drillings. In the feasibility study, potential geothermal reservoir of the site will be assessed to estimate the generation capacity. Based on the results of well drillings and EIA/IEE, the project will be re-appraised. The work flow of geothermal exploration & geothermal exploitation phase is shown in Figure 4.

Figure 4 Work Flow of Exploration Phase

Source: Prepared by study team referring data of Japan Oil, Gas and Metals National Corporation

Recommendation-2: Staged Development & Possibility to Scale-Up

This project aims to start the operation of a 200 kW geothermal binary plant by 2017. To avoid initial overinvestment in geothermal power plant, staged scaling up of the generation capacity is

recommended. Monitoring of production wells & injection wells in operation stage and additional geological survey of the geothermal reservoir are recommended. Based on the results of the survey, potential of the geothermal reservoir will be re-assessed and the generation capacity of the power plant will be optimized. If feasible, scaling up gradually to 2 MW by 2024 will be planned.