MOEJ/GEC JCM Methodology Demonstration Study (DS) 2013 Final Report

Dissemination of high-efficiency inverter air conditioners

(implemented by Shimizu Corporation)

Study partners		✓ Shikoku Electric Power CO., Inc.	
		✓ DAIKIN INDUSTRIES, ltd.	
		 ✓ POLYTECH ADD, INC. ✓ EGAT 	
		20/11	
Drainat aita			
Project site	la at	Thailand, Vietnam, and Indonesia	
Category of pro		Energy Efficiency Improvement	
Description of project		This is a program-type project intended to disseminate high-efficiency inverter air conditioners, which are an outstanding Japanese technology, to Southeast Asia starting from Thailand, Vietnam and Indonesia. Instead of monitoring power consumption, the methodology is applied whereby degree day theory is used and the outside temperature, etc. needed for calculations is monitored and reduction in emissions is calculated based on the sold quantity of air conditioners and their performance data. The demonstration study mainly focuses on Thailand,	
		which implements an air conditioner energy saving labeling system, while the feasibility of applying the methodology developed for Thailand to Vietnam and Indonesia will also be examined.	
JCM	Eligibility	Criterion 1: This is a program to disseminate	
methodology	criteria	 high-efficiency air conditioners fitted with inverters in Thailand. Criterion 2: The high-efficiency air conditioner targeted by the program fulfill the following conditions: ✓ It is a new air-cooled air conditioner introduced either as a new installation or as an equipment upgrade. ✓ Rated capacity is in the 9,000~24,000 BTU/h class. ✓ It doesn't have a heating function. ✓ It is a separate type air conditioner, i.e. not a multi type air conditioner. ✓ It is ranked as Label 5. 	
	Default	There are many default values such as climate zones,	
values		representative cities & their Latitude / longitude, Indoor temperature setting of air conditioners, and specifications of model buildings. They are set conservatively based on common knowledge and opinions of experts.	
Calculation of		Reference is continuation of low-efficiency air	
	reference	conditioners and emissions from power consumption by	
	emissions	using them. The reason for it is that it is impossible to pay back the price difference between a high-efficiency air conditioner and a low-efficiency air conditioner by cost	
	Monitoring	saving from energy saving.	
Monitoring		It is necessary to monitor climate data, grid emission	

	method	factor natural discomination rate of high officiency air
	method	factor, natural dissemination rate of high-efficiency air conditioners, and sales performance of air conditioners
		annually in principle.
Result of monito	pring	Emission reductions were monitored and calculated for
	0	the three-month period from August 1 to October 31,
		2013 based on the number of high-efficiency air
		conditioners that were sold in the year of 2012.
GHG emission r	eductions	✓ Emission reduction = Reference emission – Project emission
		✓ Reference emission = Standard reference emission *
		Degree day / Standard degree day ✓ Project emission = Standard project emission * Degree
		 Project emission = Standard project emission * Degree day / Standard degree day
		✓ Standard reference emission, standard project
		emission, degree day, and standard degree day shall
		be calculated by using supplement sheet based on
		specifications of model buildings, performance curves of air conditioners, climate data, etc.
		\checkmark The result of actual monitoring and calculation found
		that emission reduction was 24 tonCO2.
Environmental in	mpacts	Environmental impact by this project is marginal.
Promotion of Ja	panese	Japanese technologies can be hired by the way that
technologies		project participants deal with air conditioners of Japanese
		manufacturers only.
Sustainable dev	elopment in	The following points can be considered as contributions
host country		to the sustainable development of host countries as a result of implementing projects similar to this one.
		\checkmark Prevention of global warming through reduction of
		emissions
		 ✓ Prevention of energy resources depletion thanks to
		energy saving
		 Prevention of air pollution thanks to energy saving
		 Avoidance of power shortages and energy shortages thanks to energy saving
		 Energy saving educational effect (spread of energy)
		saving awareness to other electrical appliances in
		addition to air conditioners)
		✓ Improvement in air conditioner design,
		manufacturing and maintenance technology
Development an		Projects that is focused in this study can be implemented
of similar projec	ts	not only in Thailand, Vietnam, and Indonesia, but also
		other South East Asian countries, South Asia, Middle
		East, Africa, and Latin America where there are cooling load.

JCM Methodology Demonstration Study (PS) 2013 "Dissemination of high-efficiency inverter air conditioners" (Host country: Thailand, Vietnam, and Indonesia)

Study Entity: Shimizu Corporation

1. Study Implementation Scheme

Country	Entity Involved in Study	Role	
	Implementation		
Japan	Shikoku Electric Power	Detailed checking of site information,	
	[Subcontractor]	coordination with EGAT, examination of	
		methods for disseminating and extending	
		high-efficiency air conditioner technology,	
		examination of the Dissemination program	
		of high-efficiency inverter air conditioners	
T		utilizing JCM	
Japan	Daikin Industries, Ltd.	Provision of technical information and retail	
	[Subcontractor]	information concerning air conditioners	
Japan	POLYTECH ADD INC.	Assistance in PDD preparation	
	[Subcontractor]		
Host	EGAT	Collection of site information (collection of	
country	[Study partner]	climate data, provision of information	
(Thailand)		concerning the air conditioner labelling	
		system, compilation of questionnaire survey	
		on methods of air conditioner use, etc.)	
Host	SUAN DUSIT RAJABHAT	Collection of site information (questionnaire	
country	UNIVERSITY	survey on methods of air conditioner use,	
(Thailand)	[Subcontractor]	etc.)	

Table-1: Study Implementation Scheme

2. Overview of Proposed JCM Project

(1) Description of Project Contents:

Outline of the Project targeted for Methodology Demonstration Study			
Outline of Project	This is a program-type project intended to disseminate high-efficiency inverter air conditioners, which are an outstanding Japanese technology, to Southeast Asia starting from Thailand, Vietnam and Indonesia. Instead of monitoring power consumption, the methodology is applied whereby degree day theory is used and the outside temperature, etc. needed for calculations is monitored and reduction in emissions is calculated based on the sold quantity of air conditioners and their performance data. The demonstration study mainly focuses on Thailand, which implements an air conditioner energy saving labeling system, while the feasibility of applying the methodology developed for Thailand to Vietnam and		

Table-2: Description of Project Contents

	Indonesia will also be examined.
Project implementing entity	At the time of the main study, monitoring data was obtained from EGAT and the air conditioner maker, however, it is scheduled for a consortium to be newly formed on the Japanese side to be the project implementing entity at the time of implementation.
Start of monitoring	August 1, 2013
Monitoring period	3 months
GHG reduction	24tCO ₂ /year (according to the monitoring report)

(2) Situations of Host Country:

	Table-3: Situations of Host Country				
Country	JCM status	Policy on air conditioners (Labeling system)			
Thailand	A Bilateral document has not yet signed	There is a labeling system on air			
	by both governments.	conditioners, but the system does not reflect			
		annual energy consumption of air			
		conditioners but only reflects rated			
		performances of air conditioners.			
Vietnam	A Bilateral document has already	There is a labeling system on air			
	signed by both governments. 1 st joint	conditioners, but the system for non-inverter			
	committee has already conducted.	air conditioners does not reflect annual			
		energy consumption of air conditioners but			
		only reflects rated performances of air			
		conditioners.			
Indonesia	A Bilateral document has already	There is no labeling system on air			
	signed by both governments. 1 st joint	conditioners so far.			
	committee has already conducted.				

3. Study Contents

(1) JCM methodology development

a. Eligibility criteria

Table-4: Eligibility criteria			
Eligibility criteria	Reasons for deeming the criteria to be appropriate		
This is a program to	In Southeast Asia, high-efficiency air conditioners fitted with inverters		
disseminate	have hardly become disseminated at all. For example, according to the		
high-efficiency air	Thailand Ministry of Energy, the figure in 2011 was just 6.65%. The air		
conditioners fitted	conditioner maker Daikin Industries estimates the figure is 7% in 2013		
with inverters in	(both figures are based on new unit sales). As this is the level even in such		
Thailand.	a relatively developed country (emerging nation) as Thailand, it is		
	guessed that dissemination ratios are similarly low in other Southeast		
	Asian countries (no specific statistical data can be found). Reasons for the		
	low dissemination rates are the high price of high-efficiency air		
	conditioners, lack of understanding about the effectiveness of		

	high-efficiency air conditioners, low awareness of energy saving and so		
	on. Therefore, introduction of high-efficiency air conditioner is required		
	as a condition for eligibility.		
The high-efficiency	\checkmark Second hand air conditioners are not targeted. This is to prevent		
air conditioner	double counting of units that are counted when sold new. Moreover,		
	there is little likelihood of air conditioners that are removed to make		
targeted by the	way for new units being used again.		
program fulfill the	✓ The scope of capacity of small air conditioners retailed in Thailand is		
following	within the scope indicated on the left. Large-size air conditioners are		
conditions:	not targeted in the methodology. If they were, building modeling would become too diverse and troublesome.		
\checkmark It is a new			
air-cooled air	✓ This methodology only targets cooling but does not include heating.		
conditioner	Since there is hardly any heating load in Southeast Asia, there is little		
introduced	need to make the methodology include this. For example, in Thailand,		
either as a new	there is no heating load but cooling load is incurred all year round.		
installation or as	since an cooled an conditioners are the most widespicad in		
an equipment	Southeast Asia, they are targeted by the methodology. Other types of air conditioners (water-cooled air conditioners, air-cooled chillers,		
upgrade.	water-cooled chillers, geothermal utilizing heat pumps, etc.) are not		
\checkmark Rated capacity	handled because they have technical differences with air-cooled air		
is in the	conditioners when it comes to evaluating performance, etc.		
9,000~24,000	 In multi-type air conditioners, the amount of power consumption 		
BTU/h class.	varies according to the operating situation of multiple indoor units.		
\checkmark It doesn't have a	Since the methodology would become too complicated if multi-types		
heating function.	were targeted, this is deemed unfeasible.		
\checkmark It is a separate	\checkmark The goal of this methodology is to introduce higher efficiency air		
type air	conditioners. Consideration should also be given to the fact that		
conditioner, i.e.	almost all the air conditioners sold in Thailand are the highest rank		
not a multi type	Label 5. In other words, air conditioners having a lower rank than 5		
air conditioner.	are deemed to be inferior products.		
\checkmark It is ranked as	Therefore, the criteria on the left are required.		
Label 5.			

b. Data and parameters fixed *ex ante*

Table-3. Data and parameters fixed ex ante				
Name of setting	Set value	Basis for setting	Classification of methodology default value or preliminary setting (project unique value)	
Climate zone in	4 types, i.e.	Information from	Methodology default	
Thailand	Northern,	EGAT	value	
	Northeastern, Central,			
	and Southern			
Representative city in	Chiang Mai	Information from	Methodology default	
Northern		EGAT	value	
Representative city in	Ubon Ratchathani	Information from	Methodology default	
Northeastern		EGAT	value	
Representative city in	Bangkok	Information from	Methodology default	
Central		EGAT	value	

Table-5: Data and parameters fixed ex ante

JCM Demonstration Study (DS) 2013 - Final Report

			iy (DS) 2015 – Filial Report
Representative city in Southern	Songkhla	Information from EGAT	Methodology default value
Latitude and	Latitude 19.27	Google map	Methodology default
longitude of	degrees N.		value
Chiangmai	Longitude 98.94		
C	degrees E.		
Latitude and	Latitude 16.21	Google map	Methodology default
longitude of Ubon	degrees N.	Google map	value
Ratchathani	Longitude 104.77		value
Katenatham	degrees E.		
	Ŭ		
Latitude and	Latitude 13.92	Google map	Methodology default
longitude of Bangkok	degrees N.		value
	Longitude 100.60		
	degrees E.		
Latitude and	Latitude 8.36 degrees	Google map	Methodology default
longitude of	N.		value
Songkhla	Longitude 100.46		
	degrees E.		
Water vapor partial	As there are multiple	Chronological	Methodology default
pressure in saturated	values, indication is	Scientific Tables	value
air	omitted here. See the	(National	
	methodology.	Astronomical Survey	
		of Japan)	
Solar constant	1,367W/m ²	New Solar Energy	Methodology default
	1,007 1171	Utilization Handbook	value
		(Japan Solar Energy	value
		Society)	
Day declination	As there are multiple	Basics of Building	Methodology default
Day decimation	values, indication is	0	value
		. . .	value
	omitted here. See the	Kimura)	
A	methodology.		Dualinaine en estáine
Average year outside	As there are multiple	Thai Meteorological	Preliminary setting
dry bulb temperature	values, indication is	Department	
	omitted here.		
Either ① or ② or	As there are multiple	Thai Meteorological	Preliminary setting
3	values, indication is	Department	
① Average year	omitted here.		
outside relative			
humidity			
outside absolute			
humidity			
③ Average year			
outside water vapor			
partial pressure			
Either ① or ②	As there are multiple	Thai Meteorological	Preliminary setting
1 Average year	values, indication is	Department	
direct normal solar	omitted here.		
radiation and diffuse			
horizontal solar			
radiation			
raulation			

			5 ()	1
② Average year				
global horizontal				
solar radiation		<u> </u>		1.6.1.
Time difference with	-2 hours	Common knowledge	Methodology	default
Japan	260490		value	1.6.14
Method of air	26.04°C	Questionnaire survey	Methodology	default
conditioner use			value	
(Outdoor temperature				
above which air				
conditioner is				
operated) Method of air	24.90%	Ouactionnaina cumuau	Mathadalagy	dafault
	24.82°C	Questionnaire survey	Methodology value	default
			value	
(Indoor temperature setting of air				
0				
conditioners) Method of air	As there are multiple	Questionnaire survey	Mathadalaar	default
conditioner use	values, indication is	Questionnane survey	Methodology value	uciauli
(Possibility	omitted here. See the		value	
(probability) that air	methodology.			
conditioners are	memodology.			
operating at each hour				
on weekdays)				
Method of air	As there are multiple	Questionnaire survey	Methodology	default
conditioner use	values, indication is	Questionnane survey	value	ucraunt
(Possibility	omitted here. See the		vulue	
(probability) that air	methodology.			
conditioners are	internetice delle Bj.			
operating at each hour				
on Saturdays)				
Method of air	As there are multiple	Questionnaire survey	Methodology	default
conditioner use	· · · · · · ·	-	value	
(Possibility	omitted here. See the			
(probability) that air	methodology.			
conditioners are				
operating at each hour				
on holidays)				
Model building M1 -	4m×3m	Building expert, air	Methodology	default
size, window size and	$1.71m^2$	conditioner expert	value	
applicable air	9,000BTU/h			
conditioners capacity				
class				
Model building M2 -	$4m \times 4m$	Building expert, air	Methodology	default
size, window size and	$2.29m^2$	conditioner expert	value	
applicable air	12,000BTU/h			
conditioners capacity				
class				
		• 1		default
		conditioner expert	value	
	15,000BTU/h			
conditioners capacity	1		1	
class				
11	4m×5m 2.86m ² 15,000BTU/h	Building expert, air conditioner expert	Methodology value	default

		SCIVI Demonstration State	ay (DS) 2013 – Final Report
Model building M4 – size, window size and applicable air conditioners capacity class	4m×6m 3.43m ² 18,000BTU/h	Building expert, air conditioner expert	Methodology default value
Model building M5 – size, window size and applicable air conditioners capacity class	4m×8m 4.57m ² 24,000BTU/h	Building expert, air conditioner expert	Methodology default value
Model building roof area	0 m^2	Because adopting the value on the left is conservative	Methodology default value
Model building window orientation	North	Because adopting the value on the left is conservative	Methodology default value
Model building floors	2.5m	Building expert	Methodology default value
Structure and thickness of model building exterior walls	Concrete 100 mm	Building expert	Methodology default value
Model building window thickness	6 mm	Building expert	Methodology default value
Thermal conductivity of concrete	1.64W/m°C	Practical Knowledge on Air Conditioning Equipment (Society of Heating, Air-Conditioning and Sanitary Engineers of Japan)	Methodology default value
Thermal conductivity of glass	0.779₩/m℃	Practical Knowledge on Air Conditioning Equipment (Society of Heating, Air-Conditioning and Sanitary Engineers of Japan)	Methodology default value
Solar transmittance of glass	0.65	Because adopting the value on the left is conservative	Methodology default value
Heat-transfer coefficient on inner side of external walls	22.7W/m ² °C	Practical Knowledge on Air Conditioning Equipment (Society of Heating, Air-Conditioning and Sanitary Engineers of Japan)	Methodology default value
Heat-transfer coefficient on outer side of external walls	8.37W/m ² °C	Practical Knowledge on Air Conditioning Equipment (Society of Heating,	Methodology default value

			ly (DS) 2015 – 1 mai report
		Air-Conditioning and Sanitary Engineers of Japan)	
Calorific value of indoor devices	5W/m ²	Building expert	Methodology default value
Human density per room	1 person	Because adopting the value on the left is conservative	Methodology default value
Ventilation per person	0m ³ /h	Because adopting the value on the left is conservative	Methodology default value
Sensible heat load per person	58.1W/person	Practical Knowledge on Air Conditioning Equipment (Society of Heating, Air-Conditioning and Sanitary Engineers of Japan)	Methodology default value
Latent heat load per person	64.0W/person	Practical Knowledge on Air Conditioning Equipment (Society of Heating, Air-Conditioning and Sanitary Engineers of Japan)	Methodology default value
Airconditionerperformancecurve(relationship)ofcoolingcapacity,outsidedrybulbtemperature,indoorwetbulbtemperatureandpowerconsumption)bulb	As there are multiple values, indication is omitted here.	Air conditioner maker	Preliminary setting
Air conditioners sales record	As there are multiple values, indication is omitted here.	Air conditioner maker or agent or retailer, etc.	Preliminary setting
Annualpowerconsumptionofhigh-efficiencyairconditionerineachclimateclimatezonebuildingmodel	As there are multiple values, indication is omitted here.	See the methodology for the calculation method	Preliminary setting
Annualpowerconsumptionoflow-efficiencyairconditionerineachclimateclimatezonebuildingmodel	As there are multiple values, indication is omitted here.	See the methodology for the calculation method	Preliminary setting
Standard (extended) degree day in each climate zone and	As there are multiple values, indication is omitted here.	See the methodology for the calculation method	Preliminary setting

building model

c. Result of actual monitoring

In this study, climate data for the period from August 1 to October 31, 2013 was used. Moreover, concerning the sold number of air conditioners, data for one year from 2012 was used. In other words, emission reductions were calculated for the three-month period from August 1 to October 31, 2013 based on the number of high-efficiency air conditioners that were sold in the year of 2012. The stud targeted only the Central climate zone, four models of air conditioners by a certain maker (A-09, B-12, C-18, D-24) and building models compatible with these air conditioners (M1, M2, M4, M5). The results are shown below. Moreover, the emission factor of grid is 0.5113tonCO₂/MWh, and the natural dissemination rate of high-efficiency air conditioners is 0.06827.

Table-6: Results of Monitoring Implementation									
Air	Compatible	Sold units	Reference	Project	Standard	Extended			
conditioner	building	N (units)	power	power	extended	degree day			
model	model		consumption	consumption	degree day	during the			
			WR (kWh)	WP (kWh)	SDD (°C	monitoring			
					day)	period DD			
					• *	(°Cday)			
A-09	M1	270	179	120	446	398			
B-12	M2	310	208	168	466	417			
C-18	M4	480	263	224	493	442			
D-24	M5	156	314	258	511	459			

Table-6: Results of Monitoring Implementation

d. Calculation of GHG emissions (including reference and project emissions)

Method for calculating reference emissions and project emissions

Reference emissions are calculated using the following formula.

$$RE_{y} = \sum_{i} \sum_{j} \sum_{k} (WR_{i,j,k} \times EF_{PJ,y} \times \frac{DD_{i,j,y}}{SDD_{i,j}} \times \sum_{m=y-7}^{y-1} (N_{i,j,k,m} \times (1 - c_{m})))$$
(1)

Where,

 RE_y Reference emissions (tCO₂/y)

- $WR_{i,j,k}$ Annual power consumption (MWh/unit/y) under standard climate data of low efficiency air conditioners corresponding to high-efficiency inverter air conditioners k for model building j in climate zone i.
- $EF_{PJ,y}$ Emission factor of grid (tCO₂/MWh) that can be acquired in y year
- $DD_{i,j,y}$ Extended degree day (or degree day) (°Cday) during the monitoring period for model building *j* in climate zone *i* in *y* year
- $SDD_{i,j}$ Standard extended degree day (or standard degree day) (°Cday) for model building *j* in climate zone *i*.

- $N_{i,j,k,m}$ Number of units sold in *m* year of high-efficiency inverter air conditioners *k* for model building *j* in climate zone *i*.
- c_m Natural dissemination rate of high-efficiency air conditioners in year m (-)
- *y* Monitoring year (Western calendar)
- *i* Climate zone category
- *j* Building model category
- *k* Model of high-efficiency inverter air conditioners
- *m* Integer from Western calendar year *y*-6 to year *y*. In other words, credits are available for a maximum of seven years from the point of air conditioner sale. However, the minimum value of *m* shall be the year when monitoring is started + 1.

Moreover, in the case where formula (1) is applied at the project registration stage, $DD_{i,j,y} = SDD_{i,j}$ shall be assumed.

Project emissions are calculated using the following formula.

$$PE_{y} = \sum_{i} \sum_{j} \sum_{k} (WP_{i,j,k} \times EF_{PJ,y} \times \frac{DD_{i,j,y}}{SDD_{i,j}} \times \sum_{m=y-7}^{y-1} (N_{i,j,k,m} \times (1-c_{m})))$$
(2)

Where,

 PE_y Project emissions (tCO₂/y)

 $WP_{i,j,k}$ Annual power consumption (MWh/unit/y) under standard climate data of high-efficiency air conditioners *k* for model building *j* in climate zone *i*.

 $EF_{PJ,y}$ Emission factor of grid (tCO₂/MWh) that can be acquired in y year

- $DD_{i,j,y}$ Extended degree day (or degree day) (°Cday) during the monitoring period for model building *j* in climate zone *i* in *y* year
- $SDD_{i,j}$ Standard extended degree day (or standard degree day) (°Cday) for model building *j* in climate zone *i*.
- $N_{i,j,k,m}$ Number of units sold in *m* year of high-efficiency inverter air conditioners *k* for model building *j* in climate zone *i*.
- c_m Natural dissemination rate of high-efficiency air conditioners in year m (-)
- y Monitoring year (Western calendar)
- *i* Climate zone category
- *j* Building model category
- *k* High-efficiency inverter air conditioners
- *m* Integer from Western calendar year y-7 to year y. In other words, credits are available for a maximum of seven years from the point of air conditioner sale. However, the minimum value of m shall be the year when monitoring is started + 1.

Moreover, in the case where formula (2) is applied at the project registration stage, $DD_{i,j,y} = SDD_{i,j}$ shall be assumed.

Emissions reductions are calculated using the following formula.

$$ER_y = (RE_y - PE_y)$$

(3)

Where,

 ER_{y} Emissions reductions (tCO₂/y)

 RE_y Reference emissions (tCO₂/y)

 PE_y Project emissions (tCO₂/y)

The following describes the procedure for calculating emissions reduction in this methodology. For calculating the extended degree day, data on solar radiation, ventilation and indoor heating, etc., which are not required for calculating the degree day, are needed. However, in the case of cities other than Bangkok where solar radiation data is not available, the degree day method is used under certain conditions.

Table-7: Procedure for Calculating Emissions (Reference Emissions, Project Emissions, Emissions Reduction) before Project Registration (at PDD Preparation) (ex-ante calculation procedure)

No.	Case utilizing the Degree Day Method Case utilizing the Extended Degree Day Method		Reference Methodology Appendix
1	Obtain, process and organize standard climate data	Obtain, process and organize standard climate data	Appendix-2
2	Calculate vertical solar radiation in standard climate data	Calculate vertical solar radiation in standard climate data	Appendix-3
3	Setting of the air conditioner use method (questionnaire survey)	Setting of the air conditioner use method (questionnaire survey)	Appendix-4
4	Obtain, process and organize performance curve of air conditioner on the market	Obtain, process and organize performance curve of air conditioner on the market	Appendix-5
5	Obtain, process and organize past sales figures for air conditioners on the market.	Obtain, process and organize past sales figures for air conditioners on the market.	Appendix-6
6	Compile combinations of high-efficiency air conditioners and corresponding low-efficiency air conditioners.	Compile combinations of high-efficiency air conditioners and corresponding low-efficiency air conditioners.	Appendix-6
7	Modeling of buildings	Modeling of buildings	Appendix-7
8	Compile combinations of high-efficiency air conditioners and corresponding modeled building.	Compile combinations of high-efficiency air conditioners and corresponding modeled building.	Appendix-6 Appendix-7
9	Calculate the cooling load and degree day $(SDD_{i,j})$ of model buildings under standard climate data.	Calculate the cooling load and degree day $(SDD_{i,j})$ of model buildings under standard climate data.	Appendix-8 Appendix-9 Appendix-10
10	Calculate air conditioner power consumption ($WR_{i,j,k}$, $WP_{i,j,k}$) under standard climate data of high-efficiency air conditioners and	Calculate air conditioner power consumption ($WR_{i,j,k}$, $WP_{i,j,k}$) under standard climate data of high-efficiency air conditioners and	Appendix-11

JCM Demonstration Study (DS) 2013 - Final Report

	low-efficiency air conditioners.	low-efficiency air conditioners.	
11	Calculate the natural dissemination	Calculate the natural dissemination	Appendix-12
	rate of high-efficiency air	rate of high-efficiency air	
	conditioners	conditioners	
12	Calculate the reference emissions	Calculate the reference emissions	-
	(RE_y) , project emissions (PE_y) and	(RE_y) , project emissions (PE_y) and	
	emissions reduction (ER _y) under	emissions reduction (ER _y) under	
	standard climate data (use	standard climate data (use	
	expressions (1)~ (3) assuming	expressions (1)~ (3) assuming	
	$DD_{i,j,y} = SDD_{i,j}$	$DD_{i,j,y} = SDD_{i,j}$	

Table-8: Procedure for Calculating Emissions (Reference Emissions, Project Emissions, Emissions Reduction) after Project Registration (at Preparation of the Monitoring Report) (ex-post calculation)

No.	Case utilizing the Degree Day Method	Case utilizing the Extended Degree Day Method	Reference Methodology Appendix
13	Obtain, process and organize climate data during project implementation	Obtain, process and organize climate data during project implementation	Appendix-2
14	-	Calculate vertical solar radiation in climate data during project implementation	Appendix-3
15	Obtain, process and organize performance curves of air conditioners on the market.	Obtain, process and organize performance curves of air conditioners on the market.	Appendix-5
16	Obtain, process and organize sales figures for air conditioners during project implementation.	Obtain, process and organize sales figures for air conditioners during project implementation.	Appendix-6
17	Compile combinations of high-efficiency air conditioners and corresponding low-efficiency air conditioners.	Compile combinations of high-efficiency air conditioners and corresponding low-efficiency air conditioners.	Appendix-6
18	Compile combinations of high-efficiency air conditioners and corresponding modeled buildings.	Compile combinations of high-efficiency air conditioners and corresponding modeled buildings.	Appendix-6 Appendix-7
19	Calculate the degree day $(DD_{i,j,y})$ under climate data during project implementation.	Calculate the extended degree day of the modeled building $(DD_{i,j,y})$ under climate data during project implementation.	Appendix-8 Appendix-9 Appendix-10
20	Calculate the natural dissemination rate of high-efficiency air conditioners	Calculate the natural dissemination rate of high-efficiency air conditioners	Appendix-12
21	Calculate the reference emissions (RE_y) , project emissions (PE_y) and emissions reduction (ER_y) under climate data during project implementation.	Calculate the reference emissions (RE_y) , project emissions (PE_y) and emissions reduction (ER_y) under climate data during project implementation.	-

Emissions and reductions based on the results of monitoring

During the monitoring period (3 months), reference emissions were 123 tonCO₂, project emissions were 99 tonCO₂ and emission reductions were 24 tonCO₂. At the same time, it was demonstrated that the methodology can be applicable.

Table-7. Emissions and Reduction based on the Results of Table-										
Air conditione r model	WR	WP	N	С	EF	SD D	DD	RE	PE	ER
	MW	MW			tonCO ₂ /MW	°C	°C	tonCO	tonCO	tonCO
-	h	h	unit	-	h	day	day	2	2	2
A-09	0.179	0.120	270	0.0682 7	0.5113	446	398	21	14	7
B-12	0.208	0.168	310	0.0682 7	0.5113	466	417	27	22	5
C-18	0.263	0.224	480	0.0682 7	0.5113	493	442	54	46	8
D-24	0.314	0.258	156	0.0682 7	0.5113	511	459	21	17	4
Total	-	-	-	-	_	-	_	123	99	24

Table-9: Emissions and Reduction based on the Results of \Im

(2) Development of JCM Project Design Document (PDD)

Need or not for environmental impact assessment

Because the project targets introduction of small-scale air conditioners, environmental impact assessment is not needed.

Method for identifying local stakeholders and implementing consultations with them

Because the Project targets introduction of small-scale air conditioners, there will be no consultations with stakeholders. However, in the case where the Project is implemented as a JCM program, it cannot be denied that a separate approach may arise. TGO, which is the JCM window agency of the host country government, has expressed no views on this point.

(3) Project development and implementation

a. Japan's contribution

Japan's contribution through implementation of similar projects

Through implementing similar projects to the one here, Japanese high-efficiency air conditioners

can be disseminated and contribution made to energy saving in the host countries.

Technologies and products required for similar projects

The technologies and products required to implement similar projects to this one are high-efficiency air conditioners (air-cooled air conditioners) equipped with inverters.

Comparison in terms of performance and price between technologies and products, etc. of Japan and other countries

On comparing the performance data of various companies' air conditioners according to catalogs acquired on site, there was found to be no clear indication that air conditioners made by Japanese makers have much higher performance (higher COP indicating efficiency at a rated point) than air conditioners by makers of other countries. However, this reflects the performance at a rated point. Since makers do not provide data concerning performance at partial load of high-efficiency air conditioners, it is not possible to make comparison. Moreover, there is no way of confirming whether or not the figures stated in catalogs are correct.

Looking at the price comparison of high-efficiency air conditioners in the same class (9,000~24,000BTU/h class), products by a certain Japanese maker sell at 2.90~3.41THB/(BTU/h) while those by a Korean maker sell at 1.83~2.25 THB/(BTU/h), indicating that Korean models are more competitive. In Thailand, since air conditioners are retailed upon displaying only performance at the rated point, the strength of Japanese products, i.e. good partial load characteristics and thus low annual power consumption, tend to be overlooked.

Conditions for introduction of Japanese technologies and products, etc.

As described above, because air conditioners made by Japanese makers do not have much higher performance than air conditioners by makers of other countries at a rated point, and data demonstrating the high partial load efficiency of Japanese air conditioners is not disclosed, it may not be possible to construct a methodology that can justify the preferred adoption of Japanese air conditioners only.

Therefore, the most effective and fastest way of promoting adoption of air conditioners made by Japanese makers is to seek it in the project implementation scheme. For example, limit the air conditioners handled by the consortium to those made by Japanese makers and seek the provision of performance data and sales data from Japanese makers only.

However, there is nothing to prevent Chinese or South Korean makers from organizing a counter consortium and implementing a similar program. Whether or not such a counter consortium is recognized under the JCM system is left to the discretion of the joint committee and governments of both countries and cannot be influenced by this company.

Moreover, although not related to JCM, useful methods for ensuring correct catalog displays of air

conditioner performance are to require makers to agree to a system whereby a third party certifies performance displays, or to establish a public agency for actually testing air conditioners and disclosing their performance. Furthermore, measures such as constructing a labeling system that also considers partial load characteristics are essential for disseminating high-efficiency air conditioners.

b. Environmental integrity

Guaranteeing favorable environmental impacts through implementation of similar projects

Favorable environmental impacts of the Project are energy saving, reduction of GHG emissions, reduction of fossil fuel consumption, reduction of air pollution and so on. In order to guarantee these favorable impacts, it is particularly necessary to education about the correct method of using high-efficiency air conditioners at the point of sale. A possible approach would be for the Japanese consortium that implements the Project to take the initiative in conducting an education campaign at retail agents.

Measures for averting negative environmental impacts resulting from implementation of similar projects

It is thought that the Project will impart no negative environmental impacts in particular. Certainly, air conditioners have some negative impacts such as vibration, noise and leakage of cooling medium, etc., however, these occur equally in low-efficiency air conditioners and are not unique to high-efficiency air conditioners. Rather, high-efficiency air conditioners that entail less intermittent operation are likely to have less negative impacts such as noise and vibration cause by stopping and starting of the compressor motor.

c. Sustainable development in host country

The following points can be considered as contributions to the sustainable development of host countries as a result of implementing projects similar to this one.

- ✓ Prevention of global warming through reduction of emissions
- ✓ Prevention of energy resources depletion thanks to energy saving
- ✓ Prevention of air pollution thanks to energy saving
- \checkmark Avoidance of power shortages and energy shortages thanks to energy saving
- ✓ Energy saving educational effect (spread of energy saving awareness to other electrical appliances in addition to air conditioners)
- ✓ Improvement in air conditioner design, manufacturing and maintenance technology